212
Views
1
CrossRef citations to date
0
Altmetric
Articles

Exploration of GO-CuO nanocomposite for its antibacterial properties and potential application as a chemosensor in the sensing of L-Leucine

, , , &
Pages 1099-1108 | Received 12 Jan 2021, Accepted 11 Jul 2021, Published online: 03 Aug 2021

References

  • Saleh, T. A. Nanomaterials: Classification, Properties and Environmental Toxicities. Environ. Technol. Innov. 2020, 20, 101067. DOI: 10.1016/j.eti.2020.101067.
  • Staudenmaier, L. Verfahren Zur Darstellung Der Graphitsäure. Ber. Dtsch. Chem. Ges. 1898, 31, 1481–1487. DOI: 10.1002/cber.18980310237.
  • Hofmann, U.; König, E. Untersuchungen Über Graphitoxyd. Z Anorg Allg Chem 1937, 234, 311–336.
  • Zaaba, N. I.; Foo, K. L.; Hashim, U.; Tan, S. J.; Liu, W.-W.; Voon, C. H. Synthesis of Graphene Oxide Using Modified Hummers Method: Solvent Influence. Procedia Eng. 2017, 184, 469–477. DOI: 10.1016/j.proeng.2017.04.118.
  • Rumei, C.; Yong, L.; Shengju, O.; Yaqiong, P.; Shu, Z.; Hao, C.; Liming, D.; Jia, Q. Optical Turn-On Sensor Based on Graphene Oxide for Selective Detection of Glucosamine. Anal. Chem. 2012, 84, 5641–5644.
  • Yuqi, Y.; Abdullah, M. A.; Zhiwen, T.; Dan, D.; Yuehe, L. Graphene Based Materials for Biomedical Applications. Mater. Today 2013, 16, 365–373.
  • Qingqing, K.; John, W. Graphene-Based Materials for Supercapacitor Electrodes – A Review. J. Materiomics 2016, 2, 37–54.
  • Stefano, B.; Richard, W.; Di, W.; Michael, A.; Samiul, H.; Elisabetta, S.; Nadine, H.; Jani, K.; Tapani, R. Ultrafast Graphene Oxide Humidity Sensors. ACS Nano 2013, 7, 11166–11173.
  • Ryo, F.; Edwin, P. K.; Shotaro, S.; Yuta, S.; Shinya, H.; Shin, I. O.; Kei, T. Arsine Gas Sensor Based on Gold-Modified Reduced Graphene Oxide. Sens. Actuators, B. 2017, 240, 657–663.
  • Williams, G.; Seger, B.; Kamat, P. V. TiO2-Graphene Nanocomposites UV-Assisted Photocatalytic Reduction of Graphene Oxide. ACS Nano. 2008, 2, 1487–1491. DOI: 10.1021/nn800251f.
  • Yang, S. B.; Feng, X. L.; Wang, L.; Tang, K.; Maier, J.; Mullen, K. Graphene-Based Nanosheets with a Sandwich Structure. Angew. Chem. Int. Ed. Engl. 2010, 49, 4795–4799. DOI: 10.1002/anie.201001634.
  • Shen, J.; Shi, M.; Yan, B.; Ma, H.; Li, N.; Ye, M. One-Pot Hydrothermal Synthesis of Ag-Reduced Graphene Oxide Composite with Ionic Liquid. J. Mater. Chem. 2011, 21, 7795–7801. DOI: 10.1039/c1jm10671f.
  • Wang, D. H.; Kou, R.; Choi, D. W.; Yang, Z. G.; Nie, Z. M.; Li, J.; Saraf, L. V.; Hu, D. H.; Zhang, J. G.; Graff, G. L.; et al. Ternary Self-Assembly of Ordered Metal Oxide-Graphene Nanocomposites for Electrochemical Energy Storage. ACS Nano. 2010, 4, 1587–1595. DOI: 10.1021/nn901819n.
  • Saleh, T. A. Nanocomposite of Carbon Nanotubes/Silica Nanoparticles and Their Use for Adsorption of Pb (II): from Surface Properties to Sorption Mechanism. Desalin. Water Treat. 2015, 57, 10730–10744. DOI: 10.1080/19443994.2015.1036784.
  • Saleh, T. A. Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica- multiwall carbon nanotubes. Environ. Sci. Pollut. Res. Int. 2015, 22, 16721–16731. DOI: 10.1007/s11356-015-4866-z.
  • Saleh, T. A. Simultaneous Adsorptive Desulfurization of Diesel Fuel over Bimetallic Nanoparticles Loaded on Activated Carbon. J. Cleaner Prod. 2017, 172, 2123–2132. DOI: 10.1016/j.jclepro.2017.11.208.
  • Mokhtar, A.; Djelad, A.; Bengueddach, A.; Sassi, M. CuNPs-magadiite/chitosan nanocomposite beads as advanced antibacterial agent: Synthetic path and characterization. Int. J. Biol. Macromol. 2018, 118, 2149–2155. DOI: 10.1016/j.ijbiomac.2018.07.058.
  • Mehdi, Z.; Mokhtar, A.; Adjdir, M.; Bennabi, F.; Khaled, R.; Djelad, A.; Bengueddach, A.; Sassi, M. Preparation of Al- Magadiite Material, Copper Ions Exchange and Effect of Counter-Ions: antibacterial and Antifungal Applications. Res. Chem. Intermed. 2019, 45, 633–644.
  • Abdelkrim, S.; Mokhtar, A.; Djelad, A.; Bennabi, F.; Souna, A.; Bengueddach, A.; Sassi, M. Chitosan/Ag-Bentonite Nanocomposites: Preparation, Characterization, Swelling and Biological Properties. J. Inorg. Organomet. Polym. 2019, 30, 831–840. DOI: 10.1007/s10904-019-01219-8.
  • Soumia, A.; Adel, M.; Amina, S.; Bouhadjar, B.; Amal, D.; Farouk, Z.; Abdelkader, B.; Mohamed, S. Fe3O4-alginate nanocomposite hydrogel beads material: One-pot preparation, release kinetics and antibacterial activity. Int. J. Biol. Macromol. 2020, 145, 466–675. DOI: 10.1016/j.ijbiomac.2019.12.211.
  • Ehab, S.; Moataz, M.; Rabeay, Y. A. H.; Ibrahim, M. E. S. Synthesis, Characterization and Electrochemical Sensor Applications of Zinc Oxide/Graphene Oxide Nanocomposite. J. Nanostruct. Chem. 2016, 6, 137–144.
  • Hachemaoui, M.; Boukoussa, B.; Mokhtar, A.; Mekki, A.; Beldjilali, M.; Benaissa, M.; Zaoui, F.; Hakiki, A.; Chaibi, W.; Sassi, M.; Hamacha, R. Dyes Adsorption, Antifungal and Antibacterial Properties of Metal Loaded Silica: Effect of Metal and Calcination Treatment. Mater. Chem. Phys. 2020, 256, 123704.
  • Mokhtar, A.; Abdelkrim, S.; Hachemaoui, M.; Adjdir, M.; Zahraoui, M.; Boukoussa, B. Layered Silicate Magadiite and Its Composites for Pollutants Removal and Antimicrobial Properties: A Review. Appl. Clay Sci. 2020, 198, 105823. pp DOI: 10.1016/j.clay.2020.105823.
  • Mokhtar, A.; Bennabi, F.; Abdelkrim, S.; Sardi, A.; Boukoussa, B.; Souna, A.; Bengueddach, A.; Sassi, M. Evaluation of Intercalated Layered Materials as an Antimicrobial and Drug Delivery System: A Comparative Study. J. Incl. Phenom. Macrocycl. Chem. 2020, 96, 353–366. DOI: 10.1007/s10847-020-00978-z.
  • Kumarswamy, Y. K.; Handanahally, B. M.; Yenjerappa, A. N. Magnificient Adsorption Capacity of Hierarchial Mesoporous Copper Oxide Nanoflakes towards Mercury and Cadmium Ions: Determination of Analyte Concentration by DPASAV. Powder Technol. 2014, 258, 11–19.
  • Ameer, A.; Arham, S. A.; Oves, M.; Khan, M. S.; Adnan, M. Size-Dependent Antimicrobial Properties of CuO Nanoparticles against Gram-Positive and – Negative Bacterial Strains. Int. J. Nanomed. 2012, 7, 3527–3535.
  • Ratnika, V.; Seema, B.; Mulayam, S. G. A Review: biological Synthesis of Silver and Copper Nanoparticles. Nano Biomed. Eng. 2012, 4, 99.
  • Sehar, S.; Sher, F.; Zhang, S.; Khalid, U.; Sulejmanovic, J.; Lima, E. C. Thermodynamic and Kinetic Study of Synthesized Graphene oxide-CuO Nanocomposites: A Way Forward to Fuel Additive and Photocatalytic Potentials. J. Mol. Liq. 2020, 313, 113494. DOI: 10.1016/j.molliq.2020.113494.
  • Karlsson, H. L.; Cronholm, P.; Gustafsson, J.; Moller, L. Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes. Chem. Res. Toxicol. 2008, 21, 1726–1732. DOI: 10.1021/tx800064j.
  • Alswat, A. A.; Ahmad, M. B.; Hussein, M. Z.; Ibrahim, N. A.; Saleh, T. A. Copper Oxide Nanoparticles-Loaded Zeolite and Its Characteristics and Antibacterial Activities. J. Mater. Sci. Technol. 2016, 33, 889–896. DOI: 10.1016/j.jmst.2017.03.015.
  • Francis, P.; Andreia, F. F.; Siamak, N.; Menachem, E. Antimicrobial Properties of Graphene Oxide Nanosheets: Why Size Matters. ACS Nano 2015, 9, 7226–7236.
  • Banerjee, I.; Pangule, R. C.; Kane, R. S. Antifouling Coatings: recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Adv. Mater. 2011, 23, 690–718. DOI: 10.1002/adma.201001215.
  • Yadong, L.; Desong, Y.; Jianghu, C. Graphene Oxide Loaded with Copper Oxide Nanoparticles as an Antibacterial Agent against Pseudomonas Syringaepv. tomato. RSC Adv. 2017, 7, 38853–38860.
  • Kiran, K. S. R.; Mamatha, G. P.; Muralidhara, H. B.; Anantha, M. S.; Yallappa, S.; Hungund, B. S.; Yogesh, K. K. Highly Efficient Multipurpose Graphene Oxide Embedded with Copper Oxide Nanohybrid for Electrochemical Sensors and Biomedical. applications. J. Sci: Adv. Mater. Dev. 2017, 2, 493–500.
  • Sivasubramanian, R.; Biji, P. Preparation of Copper (I) oxide Nanohexagon Decorated Reduced Graphene Oxide Nanocomposite and Its Application in Electrochemical Sensing of Dopamine. Mater. Sci. Eng, B. 2016, 210, 10–18. DOI: 10.1016/j.jfo.2021.01.032.
  • Mattick, J. S. A.; Kamisoglu, K.; Ierapetritou, M. G.; Androulakis, I. P.; F. Berthiaume , Branched Chain Amino Acid Supplementation: Impact on Signaling and Relevance to Critical Illness. Wiley Interdiscip. Rev. Syst. Biol. Med. 2013, 5, 449–460. DOI: 10.1002/wsbm.1490.
  • Volpi, E.; Kobayashi, H.; Sheffield-Moore, M.; Mittendorfer, B.; Wolfe, R. R. Essential Amino Acids Are Primarily Responsible for the Amino Acid Stimulation of Muscle Protein Anabolism in Healthy Elderly Adults. Am. J. Clin. Nutr. 2003, 78, 250–258. DOI: 10.1093/ajcn/78.2.250.
  • Suryawan, A.; Davis, T. A. Regulation of Protein Synthesis by Amino Acids in Muscle of Neonates. Front. Biosci. 2012, 16, 1445–1460. DOI: 10.2741/3798.
  • Wang, F.; Nandhakumar, R.; Hu, Y.; Kim, D.; Kim, K. M.; Yoon, J. BINO(L)-based chiral receptors as fluorescent and colorimetric chemosensors for amino acids. J. Org. Chem. 2013, 78, 11571–11576. DOI: 10.1021/jo401789a.
  • Daniel Thangadurai, T.; Nithya, I.; Manjubaashini, N.; Bhuvanesh, N.; Bharathi, G.; Nandhakumar, R.; Nataraj, D. Fluorenone Based Fluorescent Probe for Selective “Turn-on” Detection of Pyrophosphate and Alanine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 199, 465–471.
  • Layman, D. K.; Walker, D. A. Potential Importance of Leucine in Treatment of Obesity and the Metabolic Syndrome. J. Nutr. 2006, 136, 319S–323S. DOI: 10.1093/jn/136.1.319S.
  • Tamanna, N.; Mahmood, N. Emerging Roles of Branched-Chain Amino Acid Supplementation in Human Diseases. Int. Sch. Res. Not. 2014, 2014, 235619. DOI: 10.1155/2014/235619.
  • Manoli, I.; Venditti, C. P. Disorders of Branched Chain Amino Acid Metabolism. Transl. Sci. Rare Dis. 2016, 1, 91–110. DOI: 10.3233/TRD-160009.
  • Hull, J.; Patel, V. B.; Hutson, S. M.; Conway, M. E. New Insights into the Role of the Branched-Chain Aminotransferase Proteins in the Human Brain. J. Neurosci. Res. 2015, 93, 987–998. DOI: 10.1002/jnr.23558.
  • Elango, R.; Rasmussen, B.; Madden, K. Safety and Tolerability of Leucine Supplementation in Elderly Men. J. Nutr. 2016, 146, 2630S–2634S. pp DOI: 10.3945/jn.116.234930.
  • Elango, R.; Chapman, K.; Rafii, M.; Ball, R. O.; Pencharz, P. B. Determination of the Tolerable Upper Intake Level of Leucine in Acute Dietary Studies in Young Men. Am. J. Clin. Nutr. 2012, 96, 759–767. DOI: 10.3945/ajcn.111.024471.
  • Cynober, L.; Bier, D. M.; Kadowaki, M.; Morris, S. M.; Renwick, A. G. A Proposal for an Upper Limit of Leucine Safe Intake in Healthy Adults. J. Nutr. 2012, 142, 2249S–22450. DOI: 10.3945/jn.112.160853.
  • Simsikova, M.; Sikola, T. Interaction of Graphene Oxide with Proteins and Applications of Their Conjugates. J. Nanomed. Res. 2017, 5, 00109.
  • Li, D.; Zhang, W.; Yu, X.; Wang, Z.; Su, Z.; Wei, G. When Biomolecules Meet Graphene: From Molecular Level Interactions to Material Design Applications. Nanoscale 2016, 8, 19491–19509.
  • Vinodha, G.; Shima, P. D.; Cinndrella, L. Mesoporous Magnetite Nanoparticle-Decorated Graphene Oxide Nanosheets for Efficient Electrochemical Detection of Hydrazine. J. Mater. Sci. 2019, 54, 4073–4088.
  • Gong, X.-B. Degradation of Dye Wastewater by Persulfate Activated with Fe3O4/Graphene Nanocomposite. J. Water Reuse Desalination 2016, 6, 553–561.
  • Zhang, Y.; Tang, Z.-R.; Fu, X.; Xu, Y.-J. TiO2-Graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano. 2010, 4, 7303–7314. DOI: 10.1021/nn1024219.
  • Donna, V.; Catherine, T.; Krishna, C. N. Effect of CTAB on Structural and Optical Properties of CuO Nanoparticles Prepared by Coprecipitation Route. IOP Conf. Ser. Mater. Sci. Eng, 2017, 263, 022002.
  • Hamideh, E. C.; Hamid, R. G.; Hosein, A.; Seyed, A. A. Antifungal Effect of Copper and Copper Oxide Nanoparticles against Penicillium on Orange Fruit. Biosci. Biotech. Res. Asia 2017, 14, 279–284.
  • Saleh, T. A.; The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4. Appl. Surf. Sci. 2011, 257, 7746–7751.
  • Mohammed Ishaque, N.; Kannabiran, K. Biosynthesis, Characterization and Antibacterial Activity of Copper Oxide Nanoparticles (CuO NPs) from Actinomycetes. Biocatal. Agric. Biotechnol. 2018, 15, 56–62.
  • Gao, Y.; Wu, J.; Ren, X.; Tan, X.; Hayat, T.; Alsaedi, A.; Cheng, C.; Chen, C. Impact of Graphene Oxide on the Antibacterial Activity of Antibiotics against Bacteria. Environ. Sci: Nano 2017, 4, 1016–1024. DOI: 10.1039/C7EN00052A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.