70
Views
2
CrossRef citations to date
0
Altmetric
Articles

Electrospray ionization stochastic dynamic mass spectrometric 3D structural analysis of ZnII–ion containing complexes in solution

&
Pages 1407-1429 | Received 31 Jan 2021, Accepted 11 Jul 2021, Published online: 28 Jul 2021

References

  • Wojcieszek, J.; Jiménez-Lamana, J.; Bierla, K.; Asztemborska, M.; Ruzik, L.; Jarosz, M.; Szpunar, J. Elucidation of the Fate of Zinc in Model Plants Using Single Particle ICP-MS and ESI Tandem MS. J. Anal. Spectrom. 2019, 34, 683–693. DOI: 10.1039/C8JA00390D.
  • Krężel, A.; Maret, W. The Biological Inorganic Chemistry of Zinc Ions. Arch. Biochem. Biophys. 2016, 611, 3–19. DOI: 10.1016/j.abb.2016.04.010.
  • Veenstra, T. Electrospray Ionization Mass Spectrometry in the Study of Biomolecular Non-Covalent Interactions. Biophys. Chem. 1999, 79, 63–79. DOI: 10.1016/S0301-4622(99)00037-X.
  • Song, K.; Spezia, R. Theoretical Mass Spectrometry. Berlin, Boston: De Gruyter, 2018, pp. 1–228.
  • Ivanova, B.; Spiteller, M. Mass Spectrometric and Quantum Chemical Treatments of Molecular and Ionic Interactions of a Flavonoid-O-Glycoside – A Stochastic Dynamic Approach. 2021, submitted.
  • Ivanova, B.; Spiteller, M. Quantitative Collision Induced Mass Spectrometry of Substituted Piperazines – A Correlative Analysis between Theory and Experiment. J. Mol. Struct. 2017, 1149, 243–256. DOI: 10.1016/j.molstruc.2017.07.107.
  • Ivanova, B.; Spiteller, M. 3D Structural Analysis of Isomers of Benzaldehydes and Benzoic Acids and Their Base Catalysed C-C Coupled Derivatives under Electrospray Ionization Conditions e Mass Spectrometric Stochastic Dynamic and Quantum Chemical Approaches. J. Mol. Struct. 2020, 1199, 127022. DOI: 10.1016/j.molstruc.2019.127022.
  • Ivanova, B.; Spiteller, M. A Stochastic Dynamic Mass Spectrometric Diffusion Method and Its Application to 3D Structural Analysis of the Analytes. Rev. Anal. Chem. 2019, 38, 20190003.
  • Ivanova, B.; Spiteller, M. Electrospray Ionization Mass Spectrometric Solvate Cluster and Multiply Charged Ions: A Stochastic Dynamic Approach to 3D Structural Analysis. SN Appl. Sci. 2020, 2, 731. DOI: 10.1007/s42452-020-2555-0.
  • Ivanova, B.; Spiteller, M. Experimental Mass Spectrometric and Theoretical Treatment of the Effect of Protonation on the 3D Molecular and Electronic Structures of Low Molecular Weight Organics and Metal–Organics of Silver(I) ion. In Protonation: Properties, Applications and Effects, Germogen, A., Ed.; New York, NY: Nova Science Publishers, 2019, pp. 1–182.
  • Ivanova, B.; Spiteller, M. 3D Structural Analysis of Copper(II) Complex of Glycine – Experimental Mass Spectrometric and Theoretical Quantum Chemical Approach. J. Mol. Struct. 2019, 1179, 192–204. DOI: 10.1016/j.molstruc.2018.10.088.
  • Ivanova, B.; Spiteller, M. Stochastic Dynamic Electrospray Ionization Mass Spectrometric Diffusion Parameters and 3D Structural Analysis of Coordination Species of Copper(II) Ion with Glycylhomopentapeptide and Its Dimeric Associates. J. Mol. Liquids 2019, 282, 70–87. DOI: 10.1016/j.molliq.2019.02.116.
  • Ivanova, B.; Spiteller, M. A Mass Spectrometric Stochastic Dynamic Diffusion Approach to Selective Quantitative and 3D Structural Analyses of Native Cyclodextrins by Electrospray Ionization and Atmospheric Pressure Chemical Ionization Methods. Bioorg. Chem. 2019, 93, 103308. DOI: 10.1016/j.bioorg.2019.103308.
  • Ivanova, B.; Spiteller, M. Mass Spectrometric Experimental and Theoretical Quantification of Reaction Kinetics, Thermodynamics and Diffusion of Piperazine Heterocyclics in Solution. In Advances in Chemistry Research, Taylor, J., Ed.; New York, NY: Nova Science Publishers, 2019, pp. 1–99.
  • Ivanova, B.; Spiteller, M. Stochastic Dynamic Electrospray Ionization Mass Spectrometric Diffusionparameters and 3D Structural Determination of Complexes of AgI-ion-Experimental and Theoretical Treatment. J. Mol. Liq. 2019, 292, 111307. DOI: 10.1016/j.molliq.2019.111307.
  • Ivanova, B.; Spiteller, M. Stochastic Dynamic Mass Spectrometric Quantification of Steroids in Mixture—Part II. Steroids 2020, 164, 108750. DOI: 10.1016/j.steroids.2020.108750.
  • Ivanova, B.; Spiteller, M. Stochastic Dynamic Mass Spectrometric Approach to Quantify Reserpine in Solution. Anal. Chem. Lett. 2020, 10, 703–721. DOI: 10.1080/22297928.2020.1865834.
  • Samanta, D.; Jena, P. Zinc in a + III Oxidation State. J. Am. Chem. Soc. 2012, 134, 8400–8403. DOI: 10.1021/ja3029119.
  • Mattapalli, H.; Monteith, W.; Burns, C.; Danell, A. Zinc Deposition during ESI-MS Analysis of Peptide-Zinc Complexes. J. Am. Soc. Mass Spectrom. 2009, 20, 2199–2205. DOI: 10.1016/j.jasms.2009.08.007.
  • Smith, D.; Zhang, Z. Probing Noncovalent Structural Features of Proteins by Mass Spectrometry. Mass Spectrom. Rev. 1994, 13, 411–429. DOI: 10.1002/mas.1280130503.
  • Shiki, S.; Ukibe, M.; Sato, Y.; Tomita, S.; Hayakawa, S.; Ohkubo, M. Kinetic-Energy-Sensitive Mass Spectrometry for Separation of Different Ions with the Same m/z Value. J. Mass Spectrom. 2008, 43, 1686–1691. DOI: 10.1002/jms.1459.
  • Jouvin, D.; Louvat, P.; Juillot, F.; Maréchal, C. N.; Benedetti, M. F. Zinc Isotopic Fractionation: Why Organic Matters. Environ. Sci. Technol. 2009, 43, 5747–5754. DOI: 10.1021/es803012e.
  • Tsednee, M.; Huang, Y.; Chen, Y.; Yeh, K. Identification of Metal Species by ESI-MS/MS through Release of Free Metals from the Corresponding Metal-Ligand Complexes. Sci. Rep. 2016, 6, 26785. DOI: 10.1038/srep26785.
  • Park, S.; Park, S.; Oh, J.; Han, S.; Jo, K.; Oh, H. Examination of Various Metal Ion Sources for Reducing Nonspecific Zinc finger-Zn2+ Complex Formation in ESI Mass Spectrometry. Mass Spectrom. Lett. 2012, 3, 82–85. DOI: 10.5478/MSL.2012.3.3.82.
  • Pearson, H.; Comber, S.; Braungardt, C.; Worsfold, P.; Stockdale, A.; Lofts, S. Determination and Prediction of Zinc Speciation in Estuaries. Environ. Sci. Technol. 2018, 52, 14245–14255. DOI: 10.1021/acs.est.8b04372.
  • Ivanova, B.; Spiteller, M. On the Nature of the Coordination Bonding of Metal-Organics for Ions with the d10 Electronic Configuration—Experimental and Theoretical Analyses. Polyhedron 2017, 137, 256–264. DOI: 10.1016/j.poly.2017.08.011.
  • Vukomanovic, D.; Stone, J. A Low-Energy CAD Study of the Ions MOH(H2O)1 (M = Mn, Co, Ni, Cu, Zn) and [M(H2,O2)]1 (M = Cr, Fe, La, Pr). Int. J. Mass Spectrom. 2000, 202, 251–259. DOI: 10.1016/S1387-3806(00)00249-9.
  • Wiegand, A.; Rit, A.; Okuda, J. Molecular Zinc Hydrides. Coord. Chem. Rev. 2016, 314, 71–82. DOI: 10.1016/j.ccr.2015.08.010.
  • Meloun, M.; Militky, J.; Forina, M.; Masson, M. Chemometrics for Analytical Chemistry, Vol. 1: PC-Aided Statistical Data Analysis; West Sussex, UK: Ellis Horwood, Ltd., 1992, pp. 1–330.
  • Hari, N.; Mandal, S.; Jana, A.; Sparkes, H.; Mohanta, S. Syntheses, Crystal Structures, Magnetic Properties and ESI-MS Studies of a Series of Trinuclear CuIIMIICuII Compounds (M = Cu, Ni, Co, Fe, Mn, Zn). RSC Adv. 2018, 8, 7315–7329. DOI: 10.1039/C7RA13763J.
  • Erxleben, A. Structures and Properties of Zn(II) Coordination Polymers. Coord. Chem. Rev. 2003, 246, 203–228. DOI: 10.1016/S0010-8545(03)00117-6.
  • Schindler, P.; Althaus, H.; Feitknecht, W. Löslichkeitsprodukte von Metalloxiden und -hydroxiden. 9. Mitteilung†. Löslichkeitsprodukte und Freie Bildungsenthalpien von Zinkoxid, amorphem Zinkhydroxid, β11-,β2-, γ-, δ- und ϵ-Zinkhydroxid. Helv. Chim. Acta 1964, 47, 982–991. DOI: 10.1002/hlca.19640470409.
  • Tam, H.; Asthagiri, D.; Paulaitis, M. Coordination State Probabilities and the Solvation Free Energy of Zn2+ in Aqueous Methanol Solutions. J. Chem. Phys. 2012, 137, 164504. DOI: 10.1063/1.4759452.
  • Lamshöft, M.; Storp, J.; Ivanova, B.; Spiteller, M. Gas-Phase CT-Stabilized Ag(I) and Zn(II) Metal–Organic Complexes – Experimental versus Theoretical Study. Polyhedron 2011, 30, 2564–2573. DOI: 10.1016/j.poly.2011.07.003.
  • Otto, M. Chemometrics, 3rd ed.; Weinheim, Germany: Wiley, 2017, pp. 1–383.
  • Apache OpenOffice. http://de.openoffice.org.
  • Miller, J.; Miller, J. Statistics and Chemometrics for Analytical Chemistry; London, UK: Pentice Hall, 1988, pp. 1–271.
  • Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Fox, D. Gaussian 09, 98; Pittsburgh, PA; Wallingford, CT: Gaussian, Inc., 2009.
  • Dalton. 2011 Program Package; http://www.daltonprogram.org/download.html.
  • Gordon, M.; Schmidt, M. Advances in Electronic Structure Theory: GAMESS a Decade Later. In Theory and Applications of Computational Chemistry: The First Forty Years, Dykstra, C.; Frenking, G.; Kim, K.; Scuseria, G., Eds.; Amsterdam, the Netherlands: Elsevier, 2005, pp. 1167–1189.
  • GausView03 Program Package. www.gaussian.com/g_prod/gv5.htm.
  • Zhao, Y.; Truhlar, D. Density Functionals with Broad Applicability in Chemistry. Accts. Chem. Acc. Chem. Res. 2008, 41, 157–167. DOI: 10.1021/ar700111a.
  • Zhao, Y.; Truhlar, D. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06–Class Functionals and 12 Other Functionals. Theor. Chem. Account. 2008, 120, 215–241. DOI: 10.1007/s00214-007-0310-x.
  • Hay, P.; Wadt, W. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals. J. Chem. Phys. 1985, 82, 299–310. DOI: 10.1063/1.448975.
  • Burkert, U.; Allinger, N. Molecular Mechanics. In ACS Monograph 177; Washington DC: American Chemical Society, 1982, pp. 1–339.
  • Allinger, L. Conformational Analysis. 130. MM2. A Hydrocarbon Force Field Utilizing V1 and V2 Torsional Terms. J. Am. Chem. Soc. 1977, 99, 8127–8134. DOI: 10.1021/ja00467a001.
  • Goodson, D. Mathematical Methods for Physical and Analytical Chemistry; Hoboken, NJ: Wiley, 2011, pp. 1–381.
  • Balaj, O.; Siu, C.; Balteanu, I.; Beyer, M.; Bondybey, V. Free Electrons, the Simplest Radicals of Them All: Chemistry of Aqueous Electrons as Studied by Mass Spectrometry. Int. J. Mass Spectrom. 2004, 238, 65–74. DOI: 10.1016/j.ijms.2004.08.006.
  • Lengye, J.; van der Linde, C.; Akhgarnusch, A.; Beyer, M. Do Protons Recombine with O2•- and CO2•- in Water Clusters? Int. J. Mass Spectrom. 2017, 418, 101–106. DOI: 10.1016/j.ijms.2016.09.023.
  • Patterson, M.; DiTusa, M.; McFerrin, C.; Kurtz, R.; Hall, R.; Poliakoff, E.; Sprunger, P. Formation of Environmentally Persistent Free Radicals (EPFRs) on ZnO at Room Temperature: Implications for the Fundamental Model of EPFR Generation. Chem. Phys. Lett. 2017, 670, 5–10. DOI: 10.1016/j.cplett.2016.12.061.
  • Lennartson, A. Zinc of Unsuspected Worth. Nat. Chem. 2014, 6, 166. DOI: 10.1038/nchem.1848.
  • Kaupp, M.; Dolg, J.; Stoll, H.; von, H. Schneringt, Oxidation State + IV in Group 12 Chemistry. Ab Initio Study of Zinc(IV), Cadmium(IV), and Mercury(IV) Fluorides. Inorg. Chem. 1994, 33, 2122–2131. DOI: 10.1021/ic00088a012.
  • Lilov, E.; Lilova, V.; Girginov, C.; Kozhukharov, S.; Nedev, S.; Tsanev, A.; Yancheva, D.; Velinova, V. Anodic Behavior of Zinc in Aqueous Borate Electrolytes. Mater. Chem. Phys. 2020, 239, 122081. DOI: 10.1016/j.matchemphys.2019.122081.
  • Tapia, J.; Hibbard, H.; Reynolds, M. Derivatization of Dextran for Multiply Charged Ion Formation and Electrospray Ionization Time-of-Flight Mass Spectrometric Analysis. J. Am. Soc. Mass Spectrom. 2017, 28, 2201–2208. DOI: 10.1007/s13361-017-1717-9.
  • Migliorati, V.; Chillemi, G.; D’Angelo, P. On the Solvation of the Zn2+ Ion in Methanol: A Combined Quantum Mechanics, Molecular Dynamics, and EXAFS Approach. Inorg. Chem. 2011, 50, 8509–8515. DOI: 10.1021/ic201100q.
  • Persson, I. Structure of Methanol Solvated Iodozinc(II) Complexes in Solution. J. Solution Chem. 2018, 47, 560–567. DOI: 10.1007/s10953-018-0737-9.
  • D’Angelo, P.; Migliorati, V. Solvation Structure of Zn2+ and Cu2+ Ions in Acetonitrile: A Combined EXAFS and XANES Study. J. Phys. Chem. B. 2015, 119, 4061–4067. DOI: 10.1021/acs.jpcb.5b01634.
  • Lee, J.; Nam, H.; Zare, R. Microdroplet Fusion Mass Spectrometry: Accelerated Kinetics of Acid-Induced Chlorophyll Demetallation. Quarter. Rev. Biophys. 2017, 50, 50.
  • Tuck, A. Gibbs Free Energy and Reaction Rate Acceleration in and on Microdroplets. Entropy 2019, 21, 1044. DOI: 10.3390/e21111044.
  • Sugai, T. Mass and Charge Measurements on Heavy Ions. Mass Spectrom. (Tokyo) 2017, 6, S0074. DOI: 10.5702/massspectrometry.S0074.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.