1,024
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Metal organic frameworks: an effective application in drug delivery systems

, , & ORCID Icon
Pages 1463-1475 | Received 21 Feb 2021, Accepted 11 Jul 2021, Published online: 23 Jul 2021

References

  • Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Paik Suh, M.; Reedijk, J. Terminology of Metal–Organic Frameworks and Coordination Polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1715–1724. DOI: 10.1351/PAC-REC-12-11-20.
  • Soni, S.; Bajpai, P.; Arora, C. A Review on Metal-Organic Framework: Synthesis, Properties and Application. Character. Appl. Nanomater. 2020, 3, 551. DOI: 10.24294/can.v2i2.551.
  • Bailar, J. C. Jr. Coordination Chemistry. Prep. Inorg. React. 1964, 1, 1–27.
  • Yaghi, O. M.; Li, G.; Li, H. Selective Binding and Removal of Guests in a Microporous Metal–Organic Framework. Nature 1995, 378, 703–706. DOI: 10.1038/378703a0.
  • Cheetham, A. K.; Férey, G.; Loiseau, T. Open-Framework Inorganic Materials. Angew. Chem. Int. Ed. 1999, 38, 3268–3292. DOI: 10.1002/(SICI)1521-3773(19991115)38:22<3268::AID-ANIE3268>3.0.CO;2-U.
  • Bučar, D.‐K.; Papaefstathiou, G. S.; Hamilton, T. D.; Chu, Q. L.; Georgiev, I. G.; MacGillivray, L. R. Template‐Controlled Reactivity in the Organic Solid State by Principles of Coordination‐Driven Self‐Assembly. Eur. J. Inorg. Chem. 2007, 2007, 4559–4568. DOI: 10.1002/ejic.200700442.
  • Seetharaj, R.; Vandana, P. V.; Arya, P.; Mathew, S. Dependence of Solvents, pH, Molar Ratio and Temperature in Tuning Metal Organic Framework Architecture. Arabian J. Chem. 2019, 12, 295–315. DOI: 10.1016/j.arabjc.2016.01.003.
  • Li, C.; Wang, K.; Li, J.; Zhang, Q. Recent Progress in Stimulus-Responsive Two-Dimensional Metal–Organic Frameworks. ACS Mater. Lett. 2020, 2, 779–797. DOI: 10.1021/acsmaterialslett.0c00148.
  • Wang, K.; Bi, R.; Huang, M.; Lv, B.; Wang, H.; Li, C.; Wu, H.; Zhang, Q. Porous Cobalt Metal-Organic Frameworks as Active Elements in Battery-Supercapacitor Hybrid Devices. Inorg. Chem. 2020, 59, 6808–6814. DOI: 10.1021/acs.inorgchem.0c00060.
  • Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A. W.; Imaz, I.; Maspoch, D.; Hill, M. R. New Synthetic Routes towards MOF Production at Scale. Chem. Soc. Rev. 2017, 46, 3453–3480. DOI: 10.1039/c7cs00109f.
  • Li, J.; Cheng, S.; Zhao, Q.; Long, P.; Dong, J. Synthesis and Hydrogen-Storage Behavior of Metal–Organic Framework MOF-5. Int. J. Hydrogen Energy 2009, 34, 1377–1382. DOI: 10.1016/j.ijhydene.2008.11.048.
  • Chemtube3d.com. Inorganic Chemistry-Metal Organic Frameworks. https://www.chemtube3d.com/category/inorganic-chemistry/metal-organic-frameworks/accessed on 10'th February 2021.
  • Lee, Y.-R.; Jang, M.-S.; Cho, H.-Y.; Kwon, H.-J.; Kim, S.; Ahn, W.-S. ZIF-8: A Comparison of Synthesis Methods. Chem. Eng. J. 2015, 271, 276–280. DOI: 10.1016/j.cej.2015.02.094.
  • Trung, T. K.; Ramsahye, N. A.; Trens, P.; Tanchoux, N.; Serre, C.; Fajula, F.; Férey, G. Adsorption of C5–C9 Hydrocarbons in Microporous MOFs MIL-100 (Cr) and MIL-101 (Cr): a Manometric Study. Microporous Mesoporous Mater. 2010, 134, 134–140. DOI: 10.1016/j.micromeso.2010.05.018.
  • Yin, R.; Li, T.; Tian, J. X.; Xi, P.; Liu, R. H. Ursolic Acid, a Potential Anticancer Compound for Breast Cancer Therapy. Crit. Rev. Food Sci. Nutr. 2018, 58, 568–574. DOI: 10.1080/10408398.2016.1203755.
  • Lee, Y.-R.; Kim, J.; Ahn, W.-S. Synthesis of Metal-Organic Frameworks: A Mini Review. Korean J. Chem. Eng. 2013, 30, 1667–1680. DOI: 10.1007/s11814-013-0140-6.
  • Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2012, 112, 933–969. DOI: 10.1021/cr200304e.
  • Cohen, S. M. Postsynthetic Methods for the Functionalization of Metal-Organic Frameworks. Chem. Rev. 2012, 112, 970–1000. DOI: 10.1021/cr200179u.
  • Hoskins, B. F.; Robson, R. Design and Construction of a New Class of Scaffolding-Like Materials Comprising Infinite Polymeric Frameworks of 3D-Linked Molecular Rods. A Reappraisal of the Zinc Cyanide and Cadmium Cyanide Structures and the Synthesis and Structure of the Diamond-Related Frameworks [N (CH3) 4][CuIZnII (CN) 4] and CuI [4, 4', 4'', 4'''-Tetracyanotetraphenylmethane] BF4. xC6H5NO2. J. Am. Chem. Soc. 1990, 112, 1546–1554. DOI: 10.1021/ja00160a038.
  • McKinstry, C.; Cathcart, R. J.; Cussen, E. J.; Fletcher, A. J.; Patwardhan, S. V.; Sefcik, J. Scalable Continuous Solvothermal Synthesis of Metal Organic Framework (MOF-5) Crystals. Chem. Eng. J. 2016, 285, 718–725. DOI: 10.1016/j.cej.2015.10.023.
  • Long, P.; Wu, H.; Zhao, Q.; Wang, Y.; Dong, J.; Li, J. Solvent Effect on the Synthesis of MIL-96 (Cr) and MIL-100 (Cr). Microporous Mesoporous Mater. 2011, 142, 489–493. DOI: 10.1016/j.micromeso.2010.12.036.
  • Otun, K. O. Temperature-Controlled Activation and Characterization of Iron-Based Metal-Organic Frameworks. Inorg. Chim. Acta 2020, 507, 119563. DOI: 10.1016/j.ica.2020.119563.
  • Chavan, S. M.; Shearer, G. C.; Svelle, S.; Olsbye, U.; Bonino, F.; Ethiraj, J.; Lillerud, K. P.; Bordiga, S. Synthesis and Characterization of Amine-Functionalized Mixed-Ligand Metal–Organic Frameworks of UiO-66 Topology. Inorg. Chem. 2014, 53, 9509–9515. DOI: 10.1021/ic500607a.
  • Zhang, X.; Gao, Y.; Liu, H.; Liu, Z. Fabrication of Porous Metal–Organic Frameworks via a Mixed-Ligand Strategy for Highly Selective and Efficient Dye Adsorption in Aqueous Solution. CrystEngComm 2015, 17, 6037–6043. DOI: 10.1039/C5CE00862J.
  • Ban, Y.; Li, Y.; Liu, X.; Peng, Y.; Yang, W. Solvothermal Synthesis of Mixed-Ligand Metal–Organic Framework ZIF-78 with Controllable Size and Morphology. Microporous Mesoporous Mater. 2013, 173, 29–36. DOI: 10.1016/j.micromeso.2013.01.031.
  • Lalonde, M.; Bury, W.; Karagiaridi, O.; Brown, Z.; Hupp, J. T.; Farha, O. K. Transmetalation: Routes to Metal Exchange within Metal–Organic Frameworks. J. Mater. Chem. A 2013, 1, 5453–5468. DOI: 10.1039/c3ta10784a.
  • Abednatanzi, S.; Gohari Derakhshandeh, P.; Depauw, H.; Coudert, F.-X.; Vrielinck, H.; Van Der Voort, P.; Leus, K. Mixed-Metal Metal-Organic Frameworks. Chem. Soc. Rev. 2019, 48, 2535–2565. DOI: 10.1039/c8cs00337h.
  • Wang, Z.; Cohen, S. M. Postsynthetic Modification of Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1315–1329. DOI: 10.1039/b802258p.
  • Song, Y.-F.; Cronin, L. Postsynthetic Covalent Modification of Metal-Organic Framework (MOF) Materials. Angew. Chem. Int. Ed. Engl. 2008, 47, 4635–4637. DOI: 10.1002/anie.200801631.
  • Li, B.; Zhang, Y.; Ma, D.; Li, L.; Li, G.; Li, G.; Shi, Z.; Feng, S. A Strategy toward Constructing a Bifunctionalized MOF Catalyst: post-Synthetic Modification of MOFs on Organic Ligands and Coordinatively Unsaturated Metal Sites. Chem. Commun. (Camb.) 2012, 48, 6151–6153. DOI: 10.1039/c2cc32384b.
  • Blăniţă, G. Microwave Assisted Synthesis of MOF-5 at Atmospheric Pressure. Rev. Roum. Chim. 2011, 56, 583–588.
  • Anumah, A. Metal-Organic Frameworks (MOFs): Recent Advances in Synthetic Methodologies and Some Applications. Chem. Methodol. 2019, 3, 283–305.
  • Vakili, R.; Xu, S.; Al-Janabi, N.; Gorgojo, P.; Holmes, S. M.; Fan, X. Microwave-Assisted Synthesis of Zirconium-Based Metal Organic Frameworks (MOFs): Optimization and Gas Adsorption. Microporous Mesoporous Mater. 2018, 260, 45–53. DOI: 10.1016/j.micromeso.2017.10.028.
  • Chen, C.; Feng, X.; Zhu, Q.; Dong, R.; Yang, R.; Cheng, Y.; He, C. Microwave-Assisted Rapid Synthesis of Well-Shaped MOF-74 (Ni) for CO2 Efficient Capture. Inorg. Chem. 2019, 58, 2717–2728. DOI: 10.1021/acs.inorgchem.8b03271.
  • Suslick, K. S.; Hyeon, T.; Fang, M.; Cichowlas, A. A. Sonochemical Synthesis of Nanostructured Catalysts. Mater. Sci. Eng. A 1995, 204, 186–192. DOI: 10.1016/0921-5093(95)09958-1.
  • Lestari, W. W.; Arvinawati, M.; Martien, R.; Kusumaningsih, T. Green and Facile Synthesis of MOF and Nano MOF Containing Zinc (II) and Benzen 1, 3, 5-Tri Carboxylate and Its Study in Ibuprofen Slow-Release. Mater. Chem. Phys. 2018, 204, 141–146. DOI: 10.1016/j.matchemphys.2017.10.034.
  • Nadar, S. S.; Rathod, V. K. Encapsulation of Lipase within Metal-Organic Framework (MOF) with Enhanced Activity Intensified under Ultrasound. Enzyme Microb. Technol. 2018, 108, 11–20. DOI: 10.1016/j.enzmictec.2017.08.008.
  • Yang, Z.; Pan, W. Ionic Liquids: Green Solvents for Nonaqueous Biocatalysis. Enzyme Microb. Technol. 2005, 37, 19–28. DOI: 10.1016/j.enzmictec.2005.02.014.
  • Oh, H.-C.; Jung, S.; Ko, I.-J.; Choi, E.-Y. Ionothermal Synthesis of Metal-Organic Framework. In Recent Advancements in the Metallurgical Engineering and Electrodeposition; IntechOpen, November 5th, 2018.
  • Liu, L.; Wei, H.; Zhang, L.; Li, J.; Dong, J. Ionothermal Synthesis of the Metal-Organic Framework Compound Cu3 (BTC) 2. In Studies in Surface Science and Catalysis; Elsevier, 2008; 174, part A, 459–462.
  • Li, P.; Cheng, F.-F.; Xiong, W.-W.; Zhang, Q. New Synthetic Strategies to Prepare Metal–Organic Frameworks. Inorg. Chem. Front. 2018, 5, 2693–2708. DOI: 10.1039/C8QI00543E.
  • Zhao, J.; Liu, X.; Wu, Y.; Li, D.-S.; Zhang, Q. Surfactants as Promising Media in the Field of Metal-Organic Frameworks. Coord. Chem. Rev. 2019, 391, 30–43. DOI: 10.1016/j.ccr.2019.04.002.
  • Xiong, W.-W.; Li, P.-Z.; Zhou, T.-H.; Tok, A. I. Y.; Xu, R.; Zhao, Y.; Zhang, Q. Kinetically Controlling Phase Transformations of Crystalline Mercury Selenidostannates through Surfactant Media. Inorg. Chem. 2013, 52, 4148–4150. DOI: 10.1021/ic4002169.
  • Gao, J.; Ye, K.; Yang, L.; Xiong, W.-W.; Ye, L.; Wang, Y.; Zhang, Q. Growing Crystalline Zinc-1,3,5-Benzenetricarboxylate Metal–Organic Frameworks in Different Surfactants. Inorg. Chem. 2014, 53, 691–693. DOI: 10.1021/ic402692p.
  • Gao, J.; Ye, K.; He, M.; Xiong, W.-W.; Cao, W.; Lee, Z. Y.; Wang, Y.; Wu, T.; Huo, F.; Liu, X.; et al. Tuning Metal–Carboxylate Coordination in Crystalline Metal–Organic Frameworks through Surfactant Media. J. Solid State Chem. 2013, 206, 27–31. DOI: 10.1016/j.jssc.2013.07.031.
  • Gao, J.; He, M.; Lee, Z. Y.; Cao, W.; Xiong, W.-W.; Li, Y.; Ganguly, R.; Wu, T.; Zhang, Q. A Surfactant-Thermal Method to Prepare Four New Three-Dimensional Heterometal–Organic Frameworks. Dalton Trans. 2013, 42, 11367–11370. DOI: 10.1039/c3dt51103k.
  • Zhao, J.; Wang, Y.; Dong, W.; Wu, Y.; Li, D.; Liu, B.; Zhang, Q. A New surfactant-introduction strategy for separating the pure single-phase of metal-organic frameworks. Chem. Commun. (Camb.) 2015, 51, 9479–9482. DOI: 10.1039/c5cc02043c.
  • Yu, X.; Toh, Y. S.; Zhao, J.; Nie, L.; Ye, K.; Wang, Y.; Li, D.; Zhang, Q. Surfactant-Thermal Method to Prepare Two New Cobalt Metal-Organic Frameworks. J. Solid State Chem. 2015, 232, 14–18. DOI: 10.1016/j.jssc.2015.08.048.
  • Yakovenko, A. A.; Wei, Z.; Wriedt, M.; Li, J.-R.; Halder, G. J.; Zhou, H.-C. Study of Guest Molecules in Metal–Organic Frameworks by Powder X-Ray Diffraction: Analysis of Difference Envelope Density. Cryst. Growth Des. 2014, 14, 5397–5407. DOI: 10.1021/cg500525g.
  • Lv, Y.; Wang, S.; Zhang, R.; Zhang, D.; Yu, H.; Lu, G. pH-Modulated Formation of Uniform MOF-5 Sheets. Inorg. Chem. Commun. 2018, 97, 30–33. DOI: 10.1016/j.inoche.2018.09.003.
  • Zhang, W.-H.; Wang, Y.-Y.; Lermontova, E. K.; Yang, G.-P.; Liu, B.; Jin, J.-C.; Dong, Z.; Shi, Q.-Z. Interaction of 1,3-Adamantanediacetic Acid (H2ADA) and Ditopic Pyridyl Subunits with Cobalt Nitrate under Hydrothermal Conditions: pH Influence, Crystal Structures, and Their Properties. Cryst. Growth Des. 2010, 10, 76–84. DOI: 10.1021/cg900285b.
  • Luo, L.; Lv, G.-C.; Wang, P.; Liu, Q.; Chen, K.; Sun, W.-Y. pH-Dependent Cobalt(ii) Frameworks with Mixed 3,3′,5,5′-Tetra(1H-Imidazol-1-yl)-1,1′-Biphenyl and 1,3,5-Benzenetricarboxylate Ligands: Synthesis, Structure and Sorption Property. CrystEngComm 2013, 15, 9537–9543. DOI: 10.1039/c3ce41056k.
  • Lin, R.-G.; Long, L.-S.; Huang, R.-B.; Zheng, L.-S. pH-Controlled the Formation of 4-Sulfocalix[4]Arene-Based 1D and 2D Coordination Polymers. Inorg. Chem. Commun. 2007, 10, 1257–1261. DOI: 10.1016/j.inoche.2007.08.003.
  • Yin, P.-X.; Zhang, J.; Qin, Y.-Y.; Cheng, J.-K.; Li, Z.-J.; Yao, Y.-G. Role of Molar-Ratio, Temperature and Solvent on the Zn/Cd 1,2,4-Triazolate System with Novel Topological Architectures. CrystEngComm 2011, 13, 3536–3544. DOI: 10.1039/c0ce00762e.
  • Han, Y.; Yang, H.; Guo, X. Synthesis Methods and Crystallization of MOFs. In Synthesis Methods and Crystallization; IntechOpen Ltd. London,Edited by Riadh Marzouki 2020.
  • Zahn, G.; Zerner, P.; Lippke, J.; Kempf, F. L.; Lilienthal, S.; Schröder, C. A.; Schneider, A. M.; Behrens, P. Insight into the Mechanism of Modulated Syntheses: In Situ Synchrotron Diffraction Studies on the Formation of Zr-Fumarate MOF. CrystEngComm 2014, 16, 9198–9207. DOI: 10.1039/C4CE01095G.
  • Tsuruoka, T.; Furukawa, S.; Takashima, Y.; Yoshida, K.; Isoda, S.; Kitagawa, S. Nanoporous Nanorods Fabricated by Coordination Modulation and Oriented Attachment Growth. Angew. Chem. 2009, 121, 4833–4837. DOI: 10.1002/ange.200901177.
  • Diring, S.; Furukawa, S.; Takashima, Y.; Tsuruoka, T.; Kitagawa, S. Controlled Multiscale Synthesis of Porous Coordination Polymer in Nano/Micro Regimes. Chem. Mater. 2010, 22, 4531–4538. DOI: 10.1021/cm101778g.
  • Cai, X.; Lin, J.; Pang, M. Facile Synthesis of Highly Uniform Fe-MIL-88B Particles. Cryst. Growth Des. 2016, 16, 3565–3568. DOI: 10.1021/acs.cgd.6b00313.
  • Butova, V. V.; Soldatov, M. A.; Guda, A. A.; Lomachenko, K. A.; Lamberti, C. Metal-Organic Frameworks: structure, Properties, Methods of Synthesis and Characterization. Russ. Chem. Rev. 2016, 85, 280–307. DOI: 10.1070/RCR4554.
  • Czaja, A. U.; Trukhan, N.; Müller, U. Industrial Applications of Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1284–1293. DOI: 10.1039/b804680h.
  • Zhang, Y.-Z.; Song, X.-S.; Yang, J.-M. Modulation of Driving Forces of UiO-66 Analog Adsorbents by Decoration with Amino Functional Groups: Superior Adsorption of Hazardous Dyes. J. Mol. Struct. 2020, 1220, 128716. DOI: 10.1016/j.molstruc.2020.128716.
  • Zhang, F.; Shi, J.; Jin, Y.; Fu, Y.; Zhong, Y.; Zhu, W. Facile Synthesis of MIL-100 (Fe) under HF-Free Conditions and Its Application in the Acetalization of Aldehydes with Diols. Chem. Eng. J. 2015, 259, 183–190. DOI: 10.1016/j.cej.2014.07.119.
  • Lee, J.; Li, J.; Jagiello, J. Gas Sorption Properties of Microporous Metal Organic Frameworks. J. Solid State Chem. 2005, 178, 2527–2532. DOI: 10.1016/j.jssc.2005.07.002.
  • Perez, E.; Karunaweera, C.; Musselman, I.; Balkus, K.; Ferraris, J. Origins and Evolution of Inorganic-Based and MOF-Based Mixed-Matrix Membranes for Gas Separations. Processes 2016, 4, 32. DOI: 10.3390/pr4030032.
  • Alaerts, L.; Séguin, E.; Poelman, H.; Thibault-Starzyk, F.; Jacobs, P. A.; De Vos, D. E. Probing the Lewis Acidity and Catalytic Activity of the Metal-Organic Framework [Cu3(btc)2] (BTC = Benzene-1,3,5-Tricarboxylate). Chemistry 2006, 12, 7353–7363. DOI: 10.1002/chem.200600220.
  • Serre, C.; Mellot-Draznieks, C.; Surblé, S.; Audebrand, N.; Filinchuk, Y.; Férey, G. Role of Solvent-Host Interactions that Lead to Very Large Swelling of Hybrid Frameworks. Science 2007, 315, 1828–1831. DOI: 10.1126/science.1137975.
  • García-Pérez, E.; Gascón, J.; Morales-Flórez, V.; Castillo, J. M.; Kapteijn, F.; Calero, S. Identification of Adsorption Sites in Cu-BTC by Experimentation and Molecular Simulation. Langmuir 2009, 25, 1725–1731. DOI: 10.1021/la803085h.
  • Flores, P. J. R.; Josue, P. Coordination Polymers of the Alkaline Earth Metals for Applications in Synthesis and Gas Storage; Syracuse University, New York, 2014.
  • Banerjee, D.; Zhang, Z.; Plonka, A. M.; Li, J.; Parise, J. B. A Calcium Coordination Framework Having Permanent Porosity and High CO2/N2 Selectivity. Cryst. Growth Des. 2012, 12, 2162–2165. DOI: 10.1021/cg300274n.
  • Prestipino, C.; Regli, L.; Vitillo, J. G.; Bonino, F.; Damin, A.; Lamberti, C.; Zecchina, A.; Solari, P. L.; Kongshaug, K. O.; Bordiga, S.; et al. Local Structure of Framework Cu (II) in HKUST-1 Metallorganic Framework: spectroscopic Characterization upon Activation and Interaction with Adsorbates. Chem. Mater. 2006, 18, 1337–1346. DOI: 10.1021/cm052191g.
  • Webber, T. E.; Desai, S. P.; Combs, R. L.; Bingham, S.; Lu, C. C.; Penn, R. L. Size Control of the MOF NU-1000 through Manipulation of the Modulator/Linker Competition. Cryst. Growth Des. 2020, 20, 2965–2972. DOI: 10.1021/acs.cgd.9b01590.
  • Gong, M.; Yang, J.; Li, Y.; Gu, J. Glutathione-Responsive Nanoscale MOFs for Effective Intracellular Delivery of the Anticancer Drug 6-Mercaptopurine. Chem. Commun. (Camb.) 2020, 56, 6448–6451. DOI: 10.1039/d0cc02872j.
  • Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; et al. Porous Metal-Organic-Framework Nanoscale Carriers as a Potential Platform for Drug Delivery and Imaging. Nat. Mater. 2010, 9, 172–178. DOI: 10.1038/nmat2608.
  • Christodoulou, I.; Serre, C.; Gref, R. Chapter 21 - Metal-Organic Frameworks for Drug Delivery: Degradation Mechanism and in Vivo Fate. In Metal-Organic Frameworks for Biomedical Applications; Mozafari, M., Ed.; Woodhead Publishing, 2020; pp 467–489.
  • Sun, Y.; Zheng, L.; Yang, Y.; Qian, X.; Fu, T.; Li, X.; Yang, Z.; Yan, H.; Cui, C.; Tan, W.; et al. Metal-Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. Nanomicro. Lett. 2020, 12, 103. DOI: 10.1007/s40820-020-00423-3.
  • Wang, H.-S.; Wang, Y.-H.; Ding, Y. Development of Biological Metal–Organic Frameworks Designed for Biomedical Applications: From Bio-Sensing/Bio-Imaging to Disease Treatment. Nanoscale Adv. 2020, 2, 3788–3797. DOI: 10.1039/D0NA00557F.
  • Abánades Lázaro, I.; Abánades Lázaro, S.; Forgan, R. S. Enhancing Anticancer Cytotoxicity through Bimodal Drug Delivery from Ultrasmall Zr MOF Nanoparticles. Chem. Commun. (Camb.) 2018, 54, 2792–2795. DOI: 10.1039/c7cc09739e.
  • Chen, D.; Yang, D.; Dougherty, C. A.; Lu, W.; Wu, H.; He, X.; Cai, T.; Van Dort, M. E.; Ross, B. D.; Hong, H.; et al. In Vivo Targeting and Positron Emission Tomography Imaging of Tumor with Intrinsically Radioactive Metal-Organic Frameworks Nanomaterials. ACS Nano. 2017, 11, 4315–4327. DOI: 10.1021/acsnano.7b01530.
  • Zhou, J.; Tian, G.; Zeng, L.; Song, X.; Bian, X-w. Nanoscaled Metal-Organic Frameworks for Biosensing, Imaging, and Cancer Therapy. Adv. Healthcare Mater. 2018, 7, 1800022. DOI: 10.1002/adhm.201800022.
  • Lu, L.; Ma, M.; Gao, C.; Li, H.; Li, L.; Dong, F.; Xiong, Y. Metal Organic Framework@Polysilsesequioxane Core/Shell-Structured Nanoplatform for Drug Delivery. Pharmaceutics 2020, 12, 98. DOI: 10.3390/pharmaceutics12020098.
  • Orellana-Tavra, C.; Baxter, E. F.; Tian, T.; Bennett, T. D.; Slater, N. K. H.; Cheetham, A. K.; Fairen-Jimenez, D. Amorphous Metal-Organic Frameworks for Drug Delivery. Chem. Commun. (Camb.) 2015, 51, 13878–13881. DOI: 10.1039/c5cc05237h.
  • Suresh, K.; Matzger, A. J. Enhanced Drug Delivery by Dissolution of Amorphous Drug Encapsulated in a Water Unstable Metal-Organic Framework (MOF). Angew. Chem. Int. Ed. Engl. 2019, 58, 16790–16794. DOI: 10.1002/anie.201907652.
  • Zhang, W.; Guo, T.; Wang, C.; He, Y.; Zhang, X.; Li, G.; Chen, Y.; Li, J.; Lin, Y.; Xu, X.; et al. MOF Capacitates Cyclodextrin to Mega-Load Mode for High-Efficient Delivery of Valsartan. Pharm. Res. 2019, 36, 117. DOI: 10.1007/s11095-019-2650-3.
  • Luo, T.; Shakya, S.; Mittal, P.; Ren, X.; Guo, T.; Bello, M. G.; Wu, L.; Li, H.; Zhu, W.; Regmi, B.; et al. Co-Delivery of Superfine Nano-Silver and Solubilized Sulfadiazine for Enhanced Antibacterial Functions. Int. J. Pharm. 2020, 584, 119407. DOI: 10.1016/j.ijpharm.2020.119407.
  • He, Y.; Hou, X.; Guo, J.; He, Z.; Guo, T.; Liu, Y.; Zhang, Y.; Zhang, J.; Feng, N. Activation of a Gamma-Cyclodextrin-Based Metal-Organic Framework using Supercritical Carbon Dioxide for High-Efficient Delivery of Honokiol. Carbohydr. Polym. 2020, 235, 115935. DOI: 10.1016/j.carbpol.2020.115935.
  • Schnabel, J.; Ettlinger, R.; Bunzen, H. Zn-MOF-74 as pH-Responsive Drug-Delivery System of Arsenic Trioxide. ChemNanoMat 2020, 6, 1229–1236. DOI: 10.1002/cnma.202000221.
  • Abánades Lázaro, I.; Wells, C. J. R.; Forgan, R. S. Multivariate Modulation of the Zr MOF UiO-66 for Defect-Controlled Combination Anticancer Drug Delivery. Angew. Chem. Int. Ed. Engl. 2020, 59, 5211–5217. DOI: 10.1002/anie.201915848.
  • Liu, C.; Xu, X.; Zhou, J.; Yan, J.; Wang, D.; Zhang, H. Redox-Responsive Tumor Targeted Dual-Drug Loaded Biocompatible Metal–Organic Frameworks Nanoparticles for Enhancing Anticancer Effects. BMC Mater. 2020, 2, 7. DOI: 10.1186/s42833-020-00013-y.
  • Yang, X.-X.; Feng, P.; Cao, J.; Liu, W.; Tang, Y. Composition-Engineered Metal-Organic Framework-Based Microneedles for Glucose-Mediated Transdermal Insulin Delivery. ACS Appl. Mater. Interfaces 2020, 12, 13613–13621. DOI: 10.1021/acsami.9b20774.
  • Cai, W.; Wang, J.; Chu, C.; Chen, W.; Wu, C.; Liu, G. Metal-Organic Framework-Based Stimuli-Responsive Systems for Drug Delivery. Adv. Sci. (Weinh.) 2019, 6, 1801526. DOI: 10.1002/advs.201801526.
  • Alijani, H.; Noori, A.; Faridi, N.; Bathaie, S. Z.; Mousavi, M. F. Aptamer-Functionalized Fe3O4@MOF Nanocarrier for Targeted Drug Delivery and Fluorescence Imaging of the Triple-Negative MDA-MB-231 Breast Cancer Cells. J. Solid State Chem. 2020, 292, 121680. DOI: 10.1016/j.jssc.2020.121680.
  • Noorian, S. A.; Hemmatinejad, N.; Navarro, J. A. R. Bioactive Molecule Encapsulation on Metal-Organic Framework via Simple Mechanochemical Method for Controlled Topical Drug Delivery Systems. Microporous Mesoporous Mater. 2020, 302, 110199. DOI: 10.1016/j.micromeso.2020.110199.
  • Zhao, K.; Guo, T.; Wang, C.; Zhou, Y.; Xiong, T.; Wu, L.; Li, X.; Mittal, P.; Shi, S.; Gref, R.; et al. Glycoside Scutellarin Enhanced CD-MOF Anchoring for Laryngeal Delivery. Acta Pharm. Sin. B 2020, 10, 1709–1718. DOI: 10.1016/j.apsb.2020.04.015.
  • Zhou, Y.; Liu, L.; Cao, Y.; Yu, S.; He, C.; Chen, X. A Nanocomposite Vehicle Based on Metal-Organic Framework Nanoparticle Incorporated Biodegradable Microspheres for Enhanced Oral Insulin Delivery. ACS Appl. Mater. Interfaces 2020, 12, 22581–22592. DOI: 10.1021/acsami.0c04303.
  • Wang, Y.; Lin, W.; Yu, S.; Huang, X.; Lang, X.; He, Q.; Gao, L.; Zhu, H.; Chen, J. A Biocompatible Zr-Based Metal-Organic Framework UiO-66-PDC as an Oral Drug Carrier for pH-Response Release. J. Solid State Chem. 2021, 293, 121805. DOI: 10.1016/j.jssc.2020.121805.
  • Jackson, S. E.; Chester, J. D. Personalised Cancer Medicine. Int. J. Cancer. 2015, 137, 262–266. DOI: 10.1002/ijc.28940.
  • Isaacs, J. D.; Ferraccioli, G. The Need for Personalised Medicine for Rheumatoid Arthritis. Ann. Rheum. Dis. 2011, 70, 4–7. DOI: 10.1136/ard.2010.135376.
  • Guilleminault, L.; Ouksel, H.; Belleguic, C.; Le Guen, Y.; Germaud, P.; Desfleurs, E.; Leroyer, C.; Magnan, A. Personalised Medicine in Asthma: From Curative to Preventive Medicine. Eur. Respir. Rev. 2017, 26, 160010. DOI: 10.1183/16000617.0010-2016.
  • Abdelhamid, H. N.; Dowaidar, M.; Hällbrink, M.; Langel, Ü. Gene Delivery Using Cell Penetrating Peptides-Zeolitic Imidazolate Frameworks. Microporous Mesoporous Mater. 2020, 300, 110173. DOI: 10.1016/j.micromeso.2020.110173.
  • Osterrieth, J. W.; Fairen‐Jimenez, D. Metal–Organic Framework Composites for Theragnostics and Drug Delivery Applications. Biotechnol. J. 2021, 16, 2000005. DOI: 10.1002/biot.202000005.
  • Zhuang, J.; Gong, H.; Zhou, J.; Zhang, Q.; Gao, W.; Fang, R. H.; Zhang, L. Targeted Gene Silencing In Vivo by Platelet Membrane-Coated Metal-Organic Framework Nanoparticles. Sci. Adv. 2020, 6, eaaz6108. DOI: 10.1126/sciadv.aaz6108.
  • Yu, D.; Ma, M.; Liu, Z.; Pi, Z.; Du, X.; Ren, J.; Qu, X. MOF-Encapsulated Nanozyme Enhanced siRNA Combo: Control Neural Stem Cell Differentiation and Ameliorate Cognitive Impairments in Alzheimer's Disease Model. Biomaterials 2020, 255, 120160. DOI: 10.1016/j.biomaterials.2020.120160.
  • Gandara-Loe, J.; Souza, B. E.; Missyul, A.; Giraldo, G.; Tan, J.-C.; Silvestre-Albero, J. MOF-Based Polymeric Nanocomposite Films as Potential Materials for Drug Delivery Devices in Ocular Therapeutics. ACS Appl. Mater. Interfaces 2020, 12, 30189–30197. DOI: 10.1021/acsami.0c07517.
  • Zhao, J.; Yin, F.; Ji, L.; Wang, C.; Shi, C.; Liu, X.; Yang, H.; Wang, X.; Kong, L. Development of a Tau-Targeted Drug Delivery System Using a Multifunctional Nanoscale Metal-Organic Framework for Alzheimer's Disease Therapy. ACS Appl. Mater. Interfaces 2020, 12, 44447–44458. DOI: 10.1021/acsami.0c11064.
  • Zhou, Y.; Niu, B.; Wu, B.; Luo, S.; Fu, J.; Zhao, Y.; Quan, G.; Pan, X.; Wu, C. A Homogenous Nanoporous Pulmonary Drug Delivery System Based on Metal-Organic Frameworks with Fine Aerosolization Performance and Good Compatibility. Acta Pharm. Sin. B 2020, 10, 2404–2416. DOI: 10.1016/j.apsb.2020.07.018.
  • Duan, Y.; Ye, F.; Huang, Y.; Qin, Y.; He, C.; Zhao, S. One-Pot Synthesis of a Metal-Organic Framework-Based Drug Carrier for Intelligent Glucose-Responsive Insulin Delivery. Chem. Commun. (Camb.) 2018, 54, 5377–5380. DOI: 10.1039/c8cc02708k.
  • Jarai, B. M.; Stillman, Z.; Attia, L.; Decker, G. E.; Bloch, E. D.; Fromen, C. A. Evaluating UiO-66 Metal-Organic Framework Nanoparticles as Acid-Sensitive Carriers for Pulmonary Drug Delivery Applications. ACS Appl. Mater. Interfaces 2020, 12, 38989–39004. DOI: 10.1021/acsami.0c10900.
  • Liu, W.; Zhong, Y.; Wang, X.; Zhuang, C.; Chen, J.; Liu, D.; Xiao, W.; Pan, Y.; Huang, J.; Liu, J.; et al. A Porous Cu(II)-Based Metal-Organic Framework Carrier for pH-Controlled Anticancer Drug Delivery. Inorg. Chem. Commun. 2020, 111, 107675. DOI: 10.1016/j.inoche.2019.107675.
  • Strzempek, W.; Menaszek, E.; Gil, B. Fe-MIL-100 as Drug Delivery System for Asthma and Chronic Obstructive Pulmonary Disease Treatment and Diagnosis. Microporous Mesoporous Mater. 2019, 280, 264–270. DOI: 10.1016/j.micromeso.2019.02.018.
  • Li, Z.; Peng, Y.; Pang, X.; Tang, B. Potential Therapeutic Effects of Mg/HCOOH Metal Organic Framework on Relieving Osteoarthritis. ChemMedChem 2020, 15, 13–16. DOI: 10.1002/cmdc.201900546.
  • Agostoni, V.; Chalati, T.; Horcajada, P.; Willaime, H.; Anand, R.; Semiramoth, N.; Baati, T.; Hall, S.; Maurin, G.; Chacun, H.; et al. Towards an Improved Anti-HIV Activity of NRTI via Metal–Organic Frameworks Nanoparticles. Adv. Healthc. Mater. 2013, 2, 1630–1637. DOI: 10.1002/adhm.201200454.
  • Kaur, N.; Tiwari, P.; Kapoor, K. S.; Saini, A. K.; Sharma, V.; Mobin, S. M. Metal–Organic Framework Based Antibiotic Release and Antimicrobial Response: An Overview. CrystEngComm 2020, 22, 7513–7527. DOI: 10.1039/D0CE01215G.
  • Shams, S.; Ahmad, W.; Memon, A. H.; Shams, S.; Wei, Y.; Yuan, Q.; Liang, H. Cu/H3BTC MOF as a Potential Antibacterial Therapeutic Agent against Staphylococcus aureus and Escherichia coli. New J. Chem. 2020, 44, 17671–17678. DOI: 10.1039/D0NJ04120C.
  • Liu, Z.; Tan, L.; Liu, X.; Liang, Y.; Zheng, Y.; Yeung, K. W. K.; Cui, Z.; Zhu, S.; Li, Z.; Wu, S.; et al. Zn2+-Assisted Photothermal Therapy for Rapid Bacteria-Killing Using Biodegradable Humic Acid Encapsulated MOFs. Colloids Surf. B Biointerfaces 2020, 188, 110781. DOI: 10.1016/j.colsurfb.2020.110781.
  • Annibaldi, A.; Widmann, C. Glucose Metabolism in Cancer Cells. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 466–470. DOI: 10.1097/MCO.0b013e32833a5577.
  • Lin, C.; He, H.; Zhang, Y.; Xu, M.; Tian, F.; Li, L.; Wang, Y. Acetaldehyde-Modified-Cystine Functionalized Zr-MOFs for pH/GSH Dual-Responsive Drug Delivery and Selective Visualization of GSH in Living Cells. RSC Adv. 2020, 10, 3084–3091. DOI: 10.1039/C9RA05741B.
  • Lin, W.; Hu, Q.; Jiang, K.; Cui, Y.; Yang, Y.; Qian, G. A Porous Zn-Based Metal-Organic Framework for pH and Temperature Dual-Responsive Controlled Drug Release. Microporous Mesoporous Mater. 2017, 249, 55–60. DOI: 10.1016/j.micromeso.2017.04.042.
  • Ren, S.-Z.; Zhu, D.; Zhu, X.-H.; Wang, B.; Yang, Y.-S.; Sun, W.-X.; Wang, X.-M.; Lv, P.-C.; Wang, Z.-C.; Zhu, H.-L.; et al. Nanoscale Metal–Organic-Frameworks Coated by Biodegradable Organosilica for pH and Redox Dual Responsive Drug Release and High-Performance Anticancer Therapy. ACS Appl. Mater. Interfaces 2019, 11, 20678–20688. DOI: 10.1021/acsami.9b04236.
  • Javanbakht, S.; Hemmati, A.; Namazi, H.; Heydari, A. Carboxymethylcellulose-Coated 5-Fluorouracil@MOF-5 Nano-Hybrid as a Bio-Nanocomposite Carrier for the Anticancer Oral Delivery. Int. J. Biol. Macromol. 2020, 155, 876–882. DOI: 10.1016/j.ijbiomac.2019.12.007.
  • Javanbakht, S.; Pooresmaeil, M.; Namazi, H. Green One-Pot Synthesis of Carboxymethylcellulose/Zn-Based Metal-Organic Framework/Graphene Oxide Bio-Nanocomposite as a Nanocarrier for Drug Delivery System. Carbohydr. Polym. 2019, 208, 294–301. DOI: 10.1016/j.carbpol.2018.12.066.
  • Cherkasov, V. R.; Mochalova, E. N.; Babenyshev, A. V.; Rozenberg, J. M.; Sokolov, I. L.; Nikitin, M. P. Antibody-Directed Metal-Organic Framework Nanoparticles for Targeted Drug Delivery. Acta Biomater. 2020, 103, 223–236. DOI: 10.1016/j.actbio.2019.12.012.
  • Bazzazzadeh, A.; Dizaji, B. F.; Kianinejad, N.; Nouri, A.; Irani, M. Fabrication of Poly(Acrylic Acid) Grafted-Chitosan/Polyurethane/Magnetic MIL-53 Metal Organic Framework Composite Core-Shell Nanofibers for Co-Delivery of Temozolomide and Paclitaxel against Glioblastoma Cancer Cells. Int. J. Pharm. 2020, 587, 119674. DOI: 10.1016/j.ijpharm.2020.119674.
  • Roth, S. K.; Epley, C. C., Novak, J. J.; McAndrew, M. L.; Cornell, H. D.; Zhu, J.; McDaniel, D. K.; Davis, J. L.; Allen, I. C.; Morris, A. J. Grove, T. Z.; Photo-Triggered Release of 5-Fluorouracil from a MOF Drug Delivery Vehicle. Chem. Commun. 2018, 54, 7617–7620.
  • El‐Bindary, A. A.; Toson, E. A.; Shoueir, K. R.; Aljohani, H. A.; Abo‐Ser, M. M. Metal–Organic Frameworks as Efficient Materials for Drug Delivery: Synthesis, Characterization, Antioxidant, Anticancer, Antibacterial and Molecular Docking Investigation. Appl. Organomet. Chem. 2020, 34, e5905. DOI: 10.1002/aoc.5905.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.