573
Views
3
CrossRef citations to date
0
Altmetric
Articles

The green synthesis of MgO nanoparticles using dried jujube fruit extract and their anti-yeast activity against Saccharomyces cerevisiae

&
Pages 653-660 | Received 25 May 2021, Accepted 11 Jul 2021, Published online: 24 Jul 2021

References

  • Auffan, M.; Rose, J.; Bottero, J.-Y.; Lowry, G.-V.; Jolivet, J.-P.; Wiesner, M.-R. Towards a Definition of Inorganic Nanoparticles from an Environmental, Health and Safety Perspective. Nat. Nanotechnol. 2009, 4, 634–641. DOI: 10.1038/nnano.2009.242.
  • Klapetek, P.; Valtr, M.; Nečas, D.; Salyk, O.; Dzik, P. Atomic Force Microscopy Analysis of Nanoparticles in Non-Ideal Conditions. Nanoscale Res. Lett. 2011, 6, 1–9. DOI: 10.1186/1556-276X-6-514.
  • Amina, M.; Al Musayeib, N. M.; Alarfaj, N. A.; El-Tohamy, M. F.; Oraby, H. F.; Al Hamoud, G. A.; Bukhari, S. I.; Moubayed, N. M. S. Biogenic Green Synthesis of MgO Nanoparticles Using Saussurea Costus Biomasses for a Comprehensive Detection of Their Antimicrobial, Cytotoxicity against MCF-7 Breast Cancer Cells and Photocatalysis Potentials. PLoS One. 2020, 15, e0237567. DOI: 10.1371/journal.pone.0237567.
  • Bai, C.; Tang, M. Toxicological Study of Metal and Metal Oxide Nanoparticles in Zebrafish. J. Appl. Toxicol. 2020, 40, 37–63. DOI: 10.1002/jat.3910.
  • Nikolova, M.-P.; Chavali, M.-S. Metal Oxide Nanoparticles as Biomedical Materials. Biomimetics 2020, 5, 27. DOI: 10.3390/biomimetics5020027.
  • Kar, S.; Pathakoti, K.; Tchounwou, P.-B.; Leszczynska, D.; Leszczynski, J. Evaluating the Cytotoxicity of a Large Pool of Metal Oxide Nanoparticles to Escherichia Coli: Mechanistic Understanding through In Vitro and In Silico studies. Chemosphere 2021, 264, 128428. DOI: 10.1016/j.chemosphere.2020.128428.
  • Ramanujam, K.; Sundrarajan, M. Antibacterial Effects of Biosynthesized MgO Nanoparticles Using Ethanolic Fruit Extract of Emblica Officinalis. J. Photochem. Photobiol. B. 2014, 141, 296–300. DOI: 10.1016/j.jphotobiol.2014.09.011.
  • Jain, A.; Wadhawan, S.; Kumar, V.; Mehta, S.-K. Colorimetric Sensing of Fe3+ Ions in Aqueous Solution Using Magnesium Oxide Nanoparticles Synthesized Using Green Approach. Chem. Phys. Lett. 2018, 706, 53–61. DOI: 10.1016/j.cplett.2018.05.069.
  • Sharmila, G.; Muthukumaran, C.; Sangeetha, E.; Saraswathi, H.; Soundarya, S.; Kumar, N. M. Characterization of Pisonia Alba Leaf Extract Derived MgO Nanoparticles and Its Biological Applications. Nano-Struct. Nano-Object. 2019, 20, 100380. DOI: doi: .
  • Qiao, S.; Novitskaya, E.; Ren, T.; Pena, G.; Graeve, O.-A. Phase and Morphology Control of Magnesium Nanoparticles via Lithium Doping. Cryst. Growth Des. 2019, 19, 3626–3632. DOI: 10.1021/acs.cgd.8b01616.
  • Verma, S. K.; Nisha, K.; Panda, P. K.; Patel, P.; Kumari, P.; Mallick, M. A.; Sarkar, B.; Das, B. Green Synthesized MgO Nanoparticles Infer Biocompatibility by Reducing in Vivo Molecular Nanotoxicity in Embryonic Zebrafish through Arginine Interaction Elicited Apoptosis. Sci. Total Environ. 2020, 713, 136521. DOI: 10.1016/j.scitotenv.2020.136521.
  • Abdallah, Y.; Ogunyemi, S. O.; Abdelazez, A.; Zhang, M.; Hong, X.; Ibrahim, E.; Hossain, A.; Fouad, H.; Li, B.; Chen, J. The Green Synthesis of MgO Nano-Flowers Using Rosmarinus Officinalis L. (Rosemary) and the Antibacterial Activities against Xanthomonas Oryzae pv. Oryzae. Biomed. Res. Int. 2019, 2019, 5620989. DOI: 10.1155/2019/5620989.
  • Tripathi, R.-M.; Chung, S. J. Biogenic Nanomaterials: Synthesis, Characterization, Growth Mechanism, and Biomedical Applications. J. Microbiol. Methods. 2019, 157, 65–80. DOI: 10.1016/j.mimet.2018.12.008.
  • Kumar, P.-P.; Bhatlu, M.-L.-D.; Sukanya, K.; Karthikeyan, S.; Jayan, N. Synthesis of Magnesium Oxide Nanoparticle by Eco Friendly Method (Green Synthesis)–a Review. Mater. Today Proc. 2021, 37, 3028–3030. DOI: 10.1016/j.matpr.2020.08.726.
  • Makarov, V.-V.; Love, A.-J.; Sinitsyna, O.-V.; Makarova, S.-S.; Yaminsky, I.-V.; Taliansky, M.-E.; Kalinina, N.-O. “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants”. Acta Nat. 2014, 6, 35–44. https://cyberleninka.ru/article/n/green-nanotechnologies-synthesis-of-metal-nanoparticles-using-plants
  • Ajitha, B.; Reddy, Y.-A.-K.; Reddy, P.-S. Biosynthesis of Silver Nanoparticles Using Momordica Charantia Leaf Broth: Evaluation of Their Innate Antimicrobial and Catalytic Activities. J. Photochem. Photobiol. B. 2015, 146, 1–9. DOI: 10.1016/j.jphotobiol.2015.02.017.
  • Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.-K.; Poinern, G.-E.-J. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials (Basel) 2015, 8, 7278–7308. DOI: 10.3390/ma8115377.
  • Suresh, J.; Yuvakkumar, R.; Sundrarajan, M.; Hong, S.-I. Green Synthesis of Magnesium Oxide Nanoparticles. Adv. Mat. Res. 2014, 952, 141–144. DOI: 10.4028/www.scientific.net/amr.952.141.
  • Moorthy, S.-K.; Ashok, C.-H.; Rao, K.-V.; Viswanathan, C. Synthesis and Characterization of MgO Nanoparticles by Neem Leaves through Green Method. Mater. Today Proc. 2015, 2, 4360–4368. DOI: 10.1016/j.matpr.2015.10.027.
  • Sushma, N.-J.; Prathyusha, D.; Swathi, G.; Madhavi, T.; Raju, B.-D.-P.; Mallikarjuna, K.; Kim, H.-S. Facile Approach to Synthesize Magnesium Oxide Nanoparticles by Using Clitoria Ternatea—Characterization and in Vitro Antioxidant Studies. Appl. Nanosci. 2016, 6, 437–444. DOI: 10.1007/s13204-015-0455-1.
  • Ramola, B.; Joshi, N.-C.; Ramola, M.; Chhabra, J.; Singh, A. Green Synthesis, Characterisations and Antimicrobial Activities of CaO Nanoparticles. Orient. J. Chem. 2019, 35, 1154–1157. DOI: 10.13005/ojc/350333.
  • Prasanth, R.; Kumar, S.-D.; Jayalakshmi, A.; Singaravelu, G.; Govindaraju, K.; Kumar, V.-G. Green Synthesis of Magnesium Oxide Nanoparticles and Their Antibacterial Activity. Indian J. Geo Marine Sci. 2019, 48, 1210–1215. http://nopr.niscair.res.in/handle/123456789/49711
  • Jiang, J.-G.; Huang, X.-J.; Chen, J.; Lin, Q.-S. Comparison of the Sedative and Hypnotic Effects of Flavonoids, Saponins, and Polysaccharides Extracted from Semen Ziziphus Jujube. Nat. Prod. Res. 2007, 21, 310–320. DOI: 10.1080/14786410701192827.
  • Goetz, P. Demonstration of the Psychotropic Effect of Mother Tincture of Zizyphus Jujuba. Phytotherapie 2009, 7, 31–36. DOI: 10.1007/s10298-008-0362-7.
  • Mahajan, R.-T.; Chopda, M.-Z. Phyto-Pharmacology of Ziziphus Jujuba Mill – a Plant Review. Pharmacogn. Rev. 2009, 3, 320–329. https://www.phcogrev.com/sites/default/files/PhcogRev-3-6-320.pdf
  • Gao, Q.-H.; Wu, C.-S.; Wang, M. The Jujube (Ziziphus Jujuba Mill.) Fruit: A Review of Current Knowledge of Fruit Composition and Health Benefits. J. Agric. Food Chem. 2013, 61, 3351–3363. DOI: 10.1021/jf4007032.
  • Ji, X.; Peng, Q.; Yuan, Y.; Shen, J.; Xie, X.; Wang, M. Isolation, Structures and Bioactivities of the Polysaccharides from Jujube Fruit (Ziziphus Jujuba Mill.): A Review. Food Chem. 2017, 227, 349–357. DOI: 10.1016/j.foodchem.2017.01.074.
  • Philip, D. Synthesis and Spectroscopic Characterization of Gold Nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2008, 71, 80–85. DOI: 10.1016/j.saa.2007.11.012.
  • Fedlheim, D. L.; Foss, C. A. Metal Nanoparticles: Synthesis, Characterization, and Applications; CRC Press: Boca Raton, FL, 2001.
  • Jeevanandam, J.; San Chan, Y.; Danquah, M.-K. Biosynthesis and Characterization of MgO Nanoparticles from Plant Extracts via Induced Molecular Nucleation. New J. Chem. 2017, 41, 2800–2814. DOI: 10.1039/C6NJ03176E.
  • Tripathi, R.-M.; Yoon, S.-Y.; Ahn, D.; Chung, S.-J. Facile Synthesis of Triangular and Hexagonal Anionic Gold Nanoparticles and Evaluation of Their Cytotoxicity. Nanomaterials 2019, 9, 1774. DOI: 10.3390/nano9121774.
  • Tripathi, R.-M.; Chung, S.-J. Phytosynthesis of Palladium Nanoclusters: An Efficient Nanozyme for Ultrasensitive and Selective Detection of Reactive Oxygen Species. Molecules 2020, 25, 3349. DOI: 10.3390/molecules25153349.
  • Tripathi, R.-M.; Kumar, N.; Shrivastav, A.; Singh, P.; Shrivastav, B.-R. Catalytic Activity of Biogenic Silver Nanoparticles Synthesized by Ficus Panda Leaf Extract. J. Mol. Catal. B Enzym. 2013, 96, 75–80. DOI: 10.1016/j.molcatb.2013.06.018.
  • Tripathi, R.-M.; Bhadwal, A.-S.; Singh, P.; Shrivastav, A.; Singh, M.-P.; Shrivastav, B.-R. Mechanistic Aspects of Biogenic Synthesis of CdS Nanoparticles Using Bacillus Licheniformis. Adv. Nat. Sci. Nanosci. Nanotechnol. 2014, 5, 025006. DOI: 10.1088/2043-6262/5/2/025006.
  • Dobrucka, R. Synthesis of MgO Nanoparticles Using Artemisia Abrotanum Herba Extract and Their Antioxidant and Photocatalytic Properties. Iran. J. Sci. Technol. Trans. Sci. 2018, 42, 547–555. DOI: 10.1007/s40995-016-0076-x.
  • Nguyen, D.-T.-C.; Dang, H.-H.; Vo, D.-V.-N.; Bach, L.-G.; Nguyen, T.-D.; Van Tran, T. Biogenic Synthesis of MgO Nanoparticles from Different Extracts (Flower, Bark, Leaf) of Tecoma Stans (L.) and Their Utilization in Selected Organic Dyes Treatment. J. Hazard. Mater. 2021, 404, 124146 DOI: 10.1016/j.jhazmat.2020.124146.
  • Promyou, S.; Supapvanich, S.; Boodkord, B.; Thangapiradeekajorn, M. Alleviation of Chilling Injury in Jujuba Fruit by Dipping in 35 °C Water. Agric. Nat. Resour. 2012, 46, 107–119.
  • Jeevanandam, J.; Chan, Y.-S.; Wong, Y.-L.; Hii, Y.-S. Biogenic Synthesis of Magnesium Oxide Nanoparticles Using Aloe Barbadensis Leaf Latex Extract. IOP Conf. Ser. Mater. Sci. Eng. 2020, 943, 012030. DOI: 10.1088/1757-899X/943/1/012030.
  • Palanisamy, G.; Pazhanivel, T. Green Synthesis of MgO Nanoparticles for Antibacterial Activity. Int. Res. J. Eng. Technol. 2017, 4, 137–141. https://irjet.com/archives/V4/i9/Special_Issue/IRJET-ISMST32.pdf
  • Pugazhendhi, A.; Prabhu, R.; Muruganantham, K.; Shanmuganathan, R.; Natarajan, S. Anticancer, Antimicrobial and Photocatalytic Activities of Green Synthesized Magnesium Oxide Nanoparticles (MgONPs) Using Aqueous Extract of Sargassum wightii. J. Photochem. Photobiol. B. 2019, 190, 86–97. DOI: 10.1016/j.jphotobiol.2018.11.014.
  • Mavrocordatos, D.; Pronk, W.; Boiler, M. Analysis of Environmental Particles by Atomic Force Microscopy, Scanning and Transmission Electron Microscopy. Water Sci. Technol. 2004, 50, 9–18. DOI: 10.2166/wst.2004.0690.
  • Sharma, G.; Soni, R.; Jasuja, N.-D. Phytoassisted Synthesis of Magnesium Oxide Nanoparticles with Swertia Chirayaita. J. Taibah Univ. Sci. 2017, 11, 471–477. DOI: 10.1016/j.jtusci.2016.09.004.
  • Hamimed, S.; Jebli, N.; Sellami, H.; Landoulsi, A.; Chatti, A. Dual Valorization of Olive Mill Wastewater by Bio-Nanosynthesis of Magnesium Oxide and Yarrowia lipolytica Biomass Production. Chem. Biodivers. 2020, 17, e1900608. DOI: 10.1002/cbdv.201900608.
  • Hazan, R.; Levine, A.; Abeliovich, H. Benzoic Acid, a Weak Organic Acid Food Preservative, Exerts Specific Effects on Intracellular Membrane Trafficking Pathways in Saccharomyces Cerevisiae. Appl. Environ. Microbiol. 2004, 70, 4449–4457. DOI: 10.1128/AEM.70.8.4449-4457.2004.
  • Stratford, M.; Nebe-von-Caron, G.; Steels, H.; Novodvorska, M.; Ueckert, J.; Archer, D.-B. Weak-Acid Preservatives: pH and Proton Movements in the Yeast Saccharomyces Cerevisiae. Int. J. Food Microbiol. 2013, 161, 164–171. DOI: 10.1016/j.ijfoodmicro.2012.12.013.
  • Wani, A.-H.; Shah, M.-A. A Unique and Profound Effect of MgO and ZnO Nanoparticles on Some Plant Pathogenic Fungi. J. Appl. Pharm. Sci. 2012, 2, 40–44. https://www.japsonline.com/admin/php/uploads/394_pdf.pdf
  • Nguyen, N.-Y.-T.; Grelling, N.; Wetteland, C.-L.; Rosario, R.; Liu, H. Antimicrobial Activities and Mechanisms of Magnesium Oxide Nanoparticles (nMgO) against Pathogenic Bacteria, Yeasts, and Biofilms. Sci. Rep. 2018, 8, 1–23. DOI: 10.1038/s41598-018-34567-5.
  • la Rosa-García, D.; Susana, C.; Martínez-Torres, P.; Gómez-Cornelio, S.; Corral-Aguado, M.-A.; Quintana, P.; Gómez-Ortíz, N.-M. Antifungal Activity of ZnO and MgO Nanomaterials and Their Mixtures against Colletotrichum Gloeosporioides Strains from Tropical Fruit. J. Nanomater. 2018, 2018, 1–9. DOI: 10.1155/2018/3498527.
  • Kong, F.; Wang, J.; Han, R.; Ji, S.; Yue, J.; Wang, Y.; Ma, L. Antifungal Activity of Magnesium Oxide Nanoparticles: Effect on the Growth and Key Virulence Factors of Candida Albicans. Mycopathologia 2020, 185, 485–494. DOI: 10.1007/s11046-020-00446-9.
  • Abdel-Aziz, M.-M.; Emam, T.-M.; Elsherbiny, E.-A. Bioactivity of Magnesium Oxide Nanoparticles Synthesized from Cell Filtrate of Endobacterium Burkholderia Rinojensis against Fusarium Oxysporum. Mater. Sci. Eng. C 2020, 109, 110617. DOI: 10.1016/j.msec.2019.110617.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.