143
Views
2
CrossRef citations to date
0
Altmetric
Articles

Preparation, characterization and photocatalytic decolorization process for the removal of orange-green dye using perovskites Ba1-xBixFeO3-δ (x = 0, 0.05, 0.1)

, , &
Pages 1123-1133 | Received 26 Jan 2021, Accepted 11 Jul 2021, Published online: 29 Jul 2021

References

  • Nong, L.; Xiao, C.; Jiang, W. Azo Dye Removal from Aqueous Solution by Organic-Inorganic Hybrid Dodecanoic Acid Modified Layered Mg-Al Hydrotalcite. Korean J. Chem. Eng. 2011, 28, 933–938. DOI: 10.1007/s11814-010-0447-5.
  • Udom, I.; Ram, M. K.; Stefanakos, E. K.; Hepp, A. F.; Goswami, D. Y. One Dimensional-ZnO Nanostructures: Synthesis, Properties and Environmental Applications. Mater. Sci. Semicond. Process. 2013, 16, 2070–2083. DOI: 10.1016/j.mssp.2013.06.017.
  • Akpan, U. G.; Hameed, B. H. Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO2-Based Photocatalysts: A Review. J. Hazard. Mater. 2009, 170, 520–529. DOI: 10.1016/j.jhazmat.2009.05.039.
  • Rauf, M. A.; Meetani, M. A.; Hisaindee, S. An Overview on the Photocatalytic Degradation of Azo Dyes in the Presence of TiO2 Doped with Selective Transition Metals. Desalination. 2011, 276, 13–27. DOI: 10.1016/j.desal.2011.03.071.
  • Nickheslat, A.; Amin, M. M.; Izanloo, H.; Fatehizadeh, A.; Mousavi, S. M. Phenol Photocatalytic Degradation by Advanced Oxidation Process under Ultraviolet Radiation Using Titanium Dioxide. J. Environ. Public Health. 2013, 2013, 815310. DOI: 10.1155/2013/815310.
  • Kumar, A.; Sharma, G.; Naushad, M.; Ahamad, T.; Veses, R. C.; Stadler, F. J. Highly Visible Active Ag2CrO4/Ag/BiFeO3@ RGO Nano-Junction for Photoreduction of CO2 and Photocatalytic Removal of Ciprofloxacin and Bromate Ions: The Triggering Effect of Ag and RGO. Chem. Eng. J. 2019, 370, 148–165. DOI: 10.1016/j.cej.2019.03.196.
  • Kumar, A.; Rana, A.; Sharma, G.; Naushad, M.; Al-Muhtaseb, A. H.; Guo, C.; Iglesias-Juez, A.; Stadler, F. J. High-Performance Photocatalytic Hydrogen Production and Degradation of Levofloxacin by Wide Spectrum-Responsive Ag/Fe3O4 Bridged SrTiO3/g-C3N4 Plasmonic Nanojunctions: Joint Effect of Ag and Fe3O4. ACS Appl. Mater. Interfaces. 2018, 10, 40474–40490. DOI: 10.1021/acsami.8b12753.
  • Kumar, A.; Sharma, G.; Naushad, M.; Al-Muhtaseb, A. H.; Kumar, A.; Hira, I.; Ahamad, T.; Ghfar, A. A.; Stadler, F. J. Visible Photodegradation of Ibuprofen and 2,4-D in Simulated Waste Water Using Sustainable Metal Free-Hybrids Based on Carbon Nitride and Biochar. J. Environ. Manage. 2019, 231, 1164–1175. DOI: 10.1016/j.jenvman.2018.11.015.
  • Sharma, G.; Dionysiou, D. D.; Sharma, S.; Kumar, A.; Ala’a, H.; Naushad, M.; Stadler, F. J. Highly Efficient Sr/Ce/Activated Carbon Bimetallic Nanocomposite for Photoinduced Degradation of Rhodamine B. Catal. Today. 2019, 335, 437–451. DOI: 10.1016/j.cattod.2019.03.063.
  • Elmorsi, T. M.; Riyad, Y. M.; Mohamed, Z. H.; Abd El Bary, H. M. H. Decolorization of Mordant Red 73 Azo Dye in Water Using H2O2/UV and Photo-Fenton Treatment. J. Hazard. Mater. 2010, 174, 352–358. DOI: 10.1016/j.jhazmat.2009.09.057.
  • Bouasla, C.; Samar, M. E.-H.; Ismail, F. Degradation of Methyl Violet 6B Dye by the Fenton Process. Desalination. 2010, 254, 35–41. DOI: 10.1016/j.desal.2009.12.017.
  • Monteagudo, J. M.; Durán, A.; San Martin, I.; Aguirre, M. Catalytic Degradation of Orange II in a Ferrioxalate-Assisted Photo-Fenton Process Using a Combined UV-a/C–Solar Pilot-Plant System. Appl. Catal. B Environ. 2010, 95, 120–129. DOI: 10.1016/j.apcatb.2009.12.018.
  • Tehrani-Bagha, A. R.; Mahmoodi, N. M.; Menger, F. M. Degradation of a Persistent Organic Dye from Colored Textile Wastewater by Ozonation. Desalination. 2010, 260, 34–38. DOI: 10.1016/j.desal.2010.05.004.
  • Bukallah, S. B.; Rauf, M. A.; Ashraf, S. S. Photocatalytic Decoloration of Coomassie Brilliant Blue with Titanium Oxide. Dye. Pigment. 2007, 72, 353–356. DOI: 10.1016/j.dyepig.2005.09.016.
  • Ayed, L.; Chaieb, K.; Cheref, A.; Bakhrouf, A. Biodegradation and Decolorization of Triphenylmethane Dyes by Staphylococcus Epidermidis. Desalination. 2010, 260, 137–146. DOI: 10.1016/j.desal.2010.04.052.
  • Andronic, L.; Enesca, A.; Vladuta, C.; Duta, A. Photocatalytic Activity of Cadmium Doped TiO2 Films for Photocatalytic Degradation of Dyes. Chem. Eng. J. 2009, 152, 64–71. DOI: 10.1016/j.cej.2009.03.031.
  • El-Bahy, Z. M.; Ismail, A. A.; Mohamed, R. M. Enhancement of Titania by Doping Rare Earth for Photodegradation of Organic Dye (Direct Blue). J. Hazard. Mater. 2009, 166, 138–143. DOI: 10.1016/j.jhazmat.2008.11.022.
  • Bhalla, A. S.; Guo, R.; Roy, R. The Perovskite Structure—A Review of Its Role in Ceramic Science and Technology. Mater. Res. Innov. 2000, 4, 3–26. DOI: 10.1007/s100190000062.
  • Kim, Y. J.; Gao, B.; Han, S. Y.; Jung, M. H.; Chakraborty, A. K.; Ko, T.; Lee, C.; Lee, W. I. Heterojunction of FeTiO3 Nanodisc and TiO2 Nanoparticle for a Novel Visible Light Photocatalyst. J. Phys. Chem. C. 2009, 113, 19179–19184. DOI: 10.1021/jp908874k.
  • Li, L.; Zhang, Y.; Schultz, A. M.; Liu, X.; Salvador, P. A.; Rohrer, G. S. Visible Light Photochemical Activity of Heterostructured PbTiO3–TiO2 Core–Shell Particles. Catal. Sci. Technol. 2012, 2, 1945–1952. DOI: 10.1039/c2cy20202f.
  • Gao, F.; Chen, X. Y.; Yin, K. B.; Dong, S.; Ren, Z. F.; Yuan, F.; Yu, T.; Zou, Z. G.; Liu, J. Visible‐Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles. Adv. Mater. 2007, 19, 2889–2892. DOI: 10.1002/adma.200602377.
  • Tang, P.; Chen, H.; Cao, F.; Pan, G. Magnetically Recoverable and Visible-Light-Driven Nanocrystalline YFeO3 Photocatalysts. Catal. Sci. Technol. 2011, 1, 1145–1148. DOI: 10.1039/c1cy00199j.
  • Wei, Z.-X.; Wang, Y.; Liu, J.-P.; Xiao, C.-M.; Zeng, W.-W.; Ye, S.-B. Synthesis, Magnetization, and Photocatalytic Activity of LaFeO3 and LaFe0.9Mn0.1O3−δ. J. Mater. Sci. 2013, 48, 1117–1126. DOI: 10.1007/s10853-012-6845-9.
  • Feng, Y.-N.; Wang, H.-C.; Luo, Y.-D.; Shen, Y.; Lin, Y.-H. Ferromagnetic and Photocatalytic Behaviors Observed in Ca-Doped BiFeO3 Nanofibres. Journal of Applied Physics, 2013, 113, 146101.
  • Pechini, M. P. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor, July 11, 1967.
  • Carrillo, A. J.; Serrano, D. P.; Pizarro, P.; Coronado, J. M. Design of Efficient Mn-Based Redox Materials for Thermochemical Heat Storage at High Temperatures. In AIP Conference Proceedings, 21st SolarPACES Conference, 13–16 October, 2015, Cape Town, South Africa: AIP Publishing, the American Institute of Physics, 2016; Vol. 1734, p 50009.
  • Ribeiro, P. C.; Costa, A. C. F. d. M.; Kiminami, R. H. G. A.; Sasaki, J. M.; Lira, H. L. Synthesis of TiO2 by the Pechini Method and Photocatalytic Degradation of Methyl Red. Mat. Res. 2013, 16, 468–472. DOI: 10.1590/S1516-14392012005000176.
  • Danks, A. E.; Hall, S. R.; Schnepp, Z. The Evolution of ‘Sol–Gel’ Chemistry as a Technique for Materials Synthesis. Mater. Horiz. 2016, 3, 91–112. DOI: 10.1039/C5MH00260E.
  • Sunde, T. O. L.; Grande, T.; Einarsrud, M.-A. Modified Pechini Synthesis of Oxide Powders and Thin Films. In Handbook of Sol-Gel Science and Technology; Klein, L., Aparicio, M., Jitianu, A., Eds.; Springer: Cham, 2016; pp 1–30.
  • Zhang, L.; Yang, J.; Li, J. A Novel Composite Cathode for Intermediate Temperature Solid Oxide Fuel Cell. J. Power Sources. 2014, 269, 723–726. DOI: 10.1016/j.jpowsour.2014.07.076.
  • Jamil, T. S.; Abbas, H. A.; Nasr, R. A.; Vannier, R. N. Visible Light Activity of BaFe1-XCuxO3-δ as Photocatalyst for Atrazine Degradation. Ecotoxicol. Environ. Saf. 2018, 163, 620–628. DOI: 10.1016/j.ecoenv.2018.07.106.
  • APHA. Standard Methods for the Examination of Water and Wastewater, 23th Ed.; Washington, DC, Water Environment Federation, American Public Health Association, American Water Works Association, 2017.
  • Rodríguez, J. Recent Developments of the Program FULLPROF. Comm. Powder Diffr. 2001, 26, 12–19.
  • Jamil, T. S.; Abbas, H. A.; Youssief, A. M.; Mansor, E. S.; Hammad, F. F. The Synthesis of Nano-Sized Undoped, Bi Doped and Bi, Cu Co-Doped SrTiO3 Using Two Sol–Gel Methods to Enhance the Photocatalytic Performance for the Degradation of Dibutyl Phthalate under Visible Light. C. R. Chim. 2017, 20, 97–106. DOI: 10.1016/j.crci.2016.05.022.
  • Rida, K.; Peña, M. A.; Sastre, E.; Martinez-Arias, A. Effect of Calcination Temperature on Structural Properties and Catalytic Activity in Oxidation Reactions of LaNiO3 Perovskite Prepared by Pechini Method. J. Rare Earths. 2012, 30, 210–216. DOI: 10.1016/S1002-0721(12)60025-8.
  • Yakout, S. M.; Hassan, H. S. Adsorption Characteristics of Sol Gel-Derived Zirconia for Cesium Ions from Aqueous Solutions. Molecules. 2014, 19, 9160–9172. DOI: 10.3390/molecules19079160.
  • Xian, H.; Zhang, X.; Li, X.; Zou, H.; Meng, M.; Zou, Z.; Guo, L.; Tsubaki, N. Effect of the Calcination Conditions on the NOx Storage Behavior of the Perovskite BaFeO3−x Catalysts. Catal. Today. 2010, 158, 215–219. DOI: 10.1016/j.cattod.2010.03.026.
  • Yang, Y.; Jiang, Y.; Wang, Y.; Sun, Y. Photoinduced Decomposition of BaFeO3 during Photodegradation of Methyl Orange. J. Mol. Catal. A Chem. 2007, 270, 56–60. DOI: 10.1016/j.molcata.2007.01.033.
  • Miao, J.-P.; Li, L.-P.; Song, Y.-B.; Xu, D.-P.; Lu, Z.; Su, W.-H. High-Pressure and-Temperature Synthesis and Characterization of Mixed Valence Perovskite Oxides LaTi1−XMgxO3. Mater. Chem. Phys. 2000, 62, 226–229. DOI: 10.1016/S0254-0584(99)00177-7.
  • Astuti, Y.; Fauziyah, A.; Nurhayati, S.; Wulansari, A. D.; Andianingrum, R.; Hakim, A. R.; Bhaduri, G. Synthesis of α-Bismuth Oxide Using Solution Combustion Method and Its Photocatalytic Properties. IOP Conf. Ser: Mater. Sci. Eng. 2016, 107, 012006. DOI: 10.1088/1757-899X/107/1/012006.
  • Long, M.; Cai, W.; Cai, J.; Zhou, B.; Chai, X.; Wu, Y. Efficient Photocatalytic Degradation of Phenol over Co3O4/BiVO4 Composite under Visible Light Irradiation. J. Phys. Chem. B. 2006, 110, 20211–20216. DOI: 10.1021/jp063441z.
  • Wang, S.; Wang, L.; Ma, W.; Johnson, D. M.; Fang, Y.; Jia, M.; Huang, Y. Moderate Valence Band of Bismuth Oxyhalides (BiOXs, X = Cl, Br, I) for the Best Photocatalytic Degradation Efficiency of MC-LR. Chem. Eng. J. 2015, 259, 410–416. DOI: 10.1016/j.cej.2014.07.103.
  • Garcia-Benjume, M. L.; Espitia-Cabrera, M. I.; Contreras-Garcia, M. E. Enhanced Photocatalytic Activity of Hierarchical Macro-Mesoporous Anatase by Incorporation. Int. J. Photoenergy. 2012, 2012, 1–10. DOI: 10.1155/2012/609561.
  • Abbas, H. A.; Nasr, R. A.; Khalaf, A.; Al Bawab, A.; Jamil, T. S. Photocatalytic Degradation of Methylene Blue Dye by Fluorite Type Fe2Zr2-XWxO7 System under Visible Light Irradiation. Ecotoxicol. Environ. Saf. 2020, 196, 110518. DOI: 10.1016/j.ecoenv.2020.110518.
  • Zhang, L.; Long, J.; Pan, W.; Zhou, S.; Zhu, J.; Zhao, Y.; Wang, X.; Cao, G. Efficient Removal of Methylene Blue over Composite-Phase BiVO4 Fabricated by Hydrothermal Control Synthesis. Mater. Chem. Phys. 2012, 136, 897–902. DOI: 10.1016/j.matchemphys.2012.08.016.
  • Gupta, V. K.; Jain, R.; Mittal, A.; Saleh, T. A.; Nayak, A.; Agarwal, S.; Sikarwar, S. Photo-Catalytic Degradation of Toxic Dye Amaranth on TiO2/UV in Aqueous Suspensions. Mater. Sci. Eng. C Mater. Biol. Appl. 2012, 32, 12–17. DOI: 10.1016/j.msec.2011.08.018.
  • Gupta, V. K.; Tyagi, I.; Agarwal, S.; Singh, R.; Chaudhary, M.; Harit, A.; Kushwaha, S. Column Operation Studies for the Removal of Dyes and Phenols Using a Low Cost Adsorbent. Glob. J. Environ. Sci. Manag. 2016, 2, 1–10.
  • Sun, J.; Qiao, L.; Sun, S.; Wang, G. Photocatalytic Degradation of Orange G on Nitrogen-Doped TiO2 Catalysts under Visible Light and Sunlight Irradiation. J. Hazard. Mater. 2008, 155, 312–319. DOI: 10.1016/j.jhazmat.2007.11.062.
  • Daneshvar, N.; Salari, D.; Khataee, A. R. Photocatalytic Degradation of Azo Dye Acid Red 14 in Water on ZnO as an Alternative Catalyst to TiO2. J. Photochem. Photobiol. A Chem. 2004, 162, 317–322. DOI: 10.1016/S1010-6030(03)00378-2.
  • Abo-Farha, S. A. Photocatalytic Degradation of Monoazo and Diazo Dyes in Wastewater on Nanometer-Sized TiO2. J. Am. Sci. 2010, 6, 130–142.
  • Sakthivel, S.; Neppolian, B.; Shankar, M.; V; Arabindoo, B.; Palanichamy, M.; Murugesan, V. Solar Photocatalytic Degradation of Azo Dye: Comparison of Photocatalytic Efficiency of ZnO and TiO2. Sol. energy Mater. Sol. Cells. 2003, 77, 65–82. DOI: 10.1016/S0927-0248(02)00255-6.
  • Rahimi, B.; Ebrahimi, A.; Mansouri, N.; Hosseini, N. Photodegradation Process for the Removal of Acid Orange 10 Using Titanium Dioxide and Bismuth Vanadate from Aqueous Solution. Glob. J. Environ. Sci. Manag. 2019, 5, 43–60.
  • Muruganandham, M.; Swaminathan, M. Photochemical Oxidation of Reactive Azo Dye with UV–H2O2 Process. Dye. Pigment. 2004, 62, 269–275. DOI: 10.1016/j.dyepig.2003.12.006.
  • Khataee, A. R.; Pons, M.-N.; Zahraa, O. Photocatalytic Degradation of Three Azo Dyes Using Immobilized TiO2 Nanoparticles on Glass Plates Activated by UV Light Irradiation: Influence of Dye Molecular Structure. J. Hazard. Mater. 2009, 168, 451–457. DOI: 10.1016/j.jhazmat.2009.02.052.
  • Sahel, K.; Perol, N.; Chermette, H.; Bordes, C.; Derriche, Z.; Guillard, C. Photocatalytic Decolorization of Remazol Black 5 (RB5) and Procion Red MX-5B—Isotherm of Adsorption, Kinetic of Decolorization and Mineralization. Appl. Catal. B Environ. 2007, 77, 100–109. DOI: 10.1016/j.apcatb.2007.06.016.
  • Pourata, R.; Khataee, A. R.; Aber, S.; Daneshvar, N. Removal of the Herbicide Bentazon from Contaminated Water in the Presence of Synthesized Nanocrystalline TiO2 Powders under Irradiation of UV-C Light. Desalination. 2009, 249, 301–307. DOI: 10.1016/j.desal.2008.10.033.
  • Ji, P.; Zhang, J.; Chen, F.; Anpo, M. Study of Adsorption and Degradation of Acid Orange 7 on the Surface of CeO2 under Visible Light Irradiation. Appl. Catal. B Environ. 2009, 85, 148–154. DOI: 10.1016/j.apcatb.2008.07.004.
  • Stylidi, M.; Kondarides, D. I.; Verykios, X. E. Visible Light-Induced Photocatalytic Degradation of Acid Orange 7 in Aqueous TiO2 Suspensions. Appl. Catal. B Environ. 2004, 47, 189–201. DOI: 10.1016/j.apcatb.2003.09.014.
  • Fan, G.; Peng, H.; Zhang, J.; Zheng, X.; Zhu, G.; Wang, S.; Hong, L. Degradation of Acetaminophen in Aqueous Solution under Visible Light Irradiation by Bi-Modified Titanate Nanomaterials: Morphology Effect, Kinetics and Mechanism. Catal. Sci. Technol. 2018, 8, 5906–5919. DOI: 10.1039/C8CY01614C.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.