430
Views
3
CrossRef citations to date
0
Altmetric
Articles

PVA nanocomposite hydrogel loaded with silver nanoparticles enriched Nigella sativa oil

ORCID Icon, ORCID Icon, , , , , , , , , & ORCID Icon show all
Pages 1134-1142 | Received 15 Dec 2020, Accepted 11 Jul 2021, Published online: 30 Aug 2021

References

  • Allahverdiyev, A. M.; Kon, K. V.; Abamor, E. S.; Bagirova, M.; Rafailovich, M. Coping with Antibiotic Resistance: Combining Nanoparticles with Antibiotics and Other Antimicrobial Agents. Expert Rev. Anti Infect. Ther. 2011, 9, 1035–1052. DOI: 10.1586/eri.11.121.
  • Sivakanthan, S.; Rajendran, S.; Gamage, A.; Madhujith, T.; Mani, S. Antioxidant and Antimicrobial Applications of Biopolymers: A Review. Food Res. Int. 2020, 136, 109327. DOI: 10.1016/j.foodres.2020.109327.
  • Jugreet, B. S.; Suroowan, S.; Rengasamy, R. R. K.; Mahomoodally, M. F. Chemistry, Bioactivities, Mode of Action and Industrial Applications of Essential Oils. Trends Food Sci. Technol. 2020, 101, 89–105. DOI: 10.1016/j.tifs.2020.04.025.
  • Rai, M.; Paralikar, P.; Jogee, P.; Agarkar, G.; Ingle, A. P.; Derita, M.; Zacchino, S. Synergistic Antimicrobial Potential of Essential Oils in Combination with Nanoparticles: Emerging Trends and Future Perspectives. Int. J. Pharm. 2017, 519, 67–78. DOI: 10.1016/j.ijpharm.2017.01.013.
  • Ogunsona, E. O.; Muthuraj, R.; Ojogbo, E.; Valerio, O.; Mekonnen, T. H. Engineered Nanomaterials for Antimicrobial Applications: A Review. Appl. Mater. Today 2020, 18, 100473. DOI: 10.1016/j.apmt.2019.100473.
  • Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S. A.; Najmi, A. K.; Siddique, N. A.; Damanhouri, Z. A.; Anwar, F. A Review on Therapeutic Potential of Nigella sativa: A Miracle Herb. Asian Pac. J. Trop. Biomed. 2013, 3, 337–352. DOI: 10.1016/S2221-1691(13)60075-1.
  • Rajabian, A.; Hosseinzadeh, H. Chapter 24—Dermatological Effects of Nigella sativa and Its Constituent, Thymoquinone: A Review. In Nuts and Seeds in Health and Disease Prevention, 2nd ed.; Preedy, V. R.; Watson, R. R., Eds.; Academic Press, Elsevier, 2020; pp 329–355. DOI: 10.1016/B978-0-12-818553-7.00024-3. ISBN: 978-0-12-818553-7.
  • Aljabre, S. H. M.; Alakloby, O. M.; Randhawa, M. A. Dermatological Effects of Nigella Sativa. J. Dermatol. Dermatol. Surg. 2015, 19, 92–98. DOI: 10.1016/j.jdds.2015.04.002.
  • Ramteke, C.; Chakrabarti, T.; Sarangi, B. K.; Pandey, R. A. Synthesis of Silver Nanoparticles from the Aqueous Extract of Leaves of Ocimum sanctum for Enhanced Antibacterial Activity. J. Chem. 2013, 2013, 1–7. DOI: 10.1155/2013/278925.
  • Tarannum, N.; Divya, D.; Gautam, Y. K. Facile Green Synthesis and Applications of Silver Nanoparticles: A State-of-the-Art Review. RSC Adv. 2019, 9, 34926–34948. DOI: 10.1039/C9RA04164H.
  • Roy, A.; Bulut, O.; Some, S.; Mandal, A. K.; Yilmaz, M. D. Green Synthesis of Silver Nanoparticles: Biomolecule-Nanoparticle Organizations Targeting Antimicrobial Activity. RSC Adv. 2019, 9, 2673–2702. DOI: 10.1039/C8RA08982E.
  • Singh, A.; Dar, M. Y.; Joshi, B.; Sharma, B.; Shrivastava, S.; Shukla, S. Phytofabrication of Silver Nanoparticles: Novel Drug to Overcome Hepatocellular Ailments. Toxicol. Rep. 2018, 5, 333–342. DOI: 10.1016/j.toxrep.2018.02.013.
  • Shyam, A.; Chandran, S.; George, S.; E, B. S., Plant Mediated Synthesis of AgNPs and Its Applications: An Overview. Inorg. Nano-Metal Chem. 2020. DOI: 10.1080/24701556.2020.1852254
  • Kishanji, M.; Mamatha, G.; Madhuri, D.; Suresh Kumar, D.; Vijaya Charan, G.; Ramesh, S.; Jadhav, V.; Madhukar, K. Preparation and Characterization of Cellulose/in Situ Generated Silver Nanoparticle Composite Films Prepared Using Pongamia pinnata Leaf Extract as a Reducing and Stabilizing Agent. Inorg. Nano-Metal Chem. 2020. DOI: 10.1080/24701556.2020.1822869
  • Kamoun, E. A.; Kenawy, E.-R. S.; Chen, X. A Review on Polymeric Hydrogel Membranes for Wound Dressing Applications: PVA-Based Hydrogel Dressings. J. Adv. Res. 2017, 8, 217–233. DOI: 10.1016/j.jare.2017.01.005.
  • Kamoun, E. A.; Chen, X.; Mohy Eldin, M. S.; Kenawy, E.-R. S. Crosslinked Poly(Vinyl Alcohol) Hydrogels for Wound Dressing Applications: A Review of Remarkably Blended Polymers. Arabian J. Chem. 2015, 8, 1–14. DOI: 10.1016/j.arabjc.2014.07.005.
  • Caló, E.; Khutoryanskiy, V. V. Biomedical Applications of Hydrogels: A Review of Patents and Commercial Products. Eur. Polym. J. 2015, 65, 252–267. DOI: 10.1016/j.eurpolymj.2014.11.024.
  • Khalil, A. Interpenetrating Polymeric Hydrogels as Favorable Materials for Hygienic Applications. Biointerface Res. Appl. Chem. 2020, 10, 5011–5020.
  • Karbarz, M.; Khalil, A. M.; Wolowicz, K.; Kaniewska, K.; Romanski, J.; Stojek, Z. Efficient Removal of Cadmium and Lead Ions from Water by Hydrogels Modified with Cystine. J. Environ. Chem. Eng. 2018, 6, 3962–3970. DOI: 10.1016/j.jece.2018.05.054.
  • Clasky, A. J.; Watchorn, J. D.; Chen, P. Z.; Gu, F. X. From Prevention to Diagnosis and Treatment: Biomedical Applications of Metal Nanoparticle-Hydrogel Composites. Acta Biomater. 2021, 122, 1–25. DOI: 10.1016/j.actbio.2020.12.030.
  • Barrett-Catton, E.; Ross, M. L.; Asuri, P. Multifunctional Hydrogel Nanocomposites for Biomedical Applications. Polymers 2021, 13, 856 (1–14). DOI: 10.3390/polym13060856.
  • Abebe, B.; Murthy, H. C. A.; Zereffa, E. A.; Adimasu, Y. Synthesis and Characterization of ZnO/PVA Nanocomposites for Antibacterial and Electrochemical Applications. Inorg. Nano-Metal Chem. 2021, 51, 1127–1138. DOI: 10.1080/24701556.2020.1814338.
  • Guler, E.; Barlas, F. B.; Yavuz, M.; Demir, B.; Gumus, Z. P.; Baspinar, Y.; Coskunol, H.; Timur, S. Bio-Active Nanoemulsions Enriched with Gold Nanoparticle, Marigold Extracts and Lipoic Acid: In Vitro Investigations. Colloids Surf. B Biointerfaces 2014, 121, 299–306. DOI: 10.1016/j.colsurfb.2014.05.026.
  • Kon, K. V.; Rai, M. K. Plant Essential Oils and Their Constituents in Coping with Multidrug-Resistant Bacteria. Expert Rev. Anti. Infect. Ther. 2012, 10, 775–790. DOI: 10.1586/eri.12.57.
  • Negut, I.; Grumezescu, V.; Ficai, A.; Grumezescu, A. M.; Holban, A. M.; Popescu, R. C.; Savu, D.; Vasile, B. S.; Socol, G. MAPLE Deposition of Nigella Sativa Functionalized Fe3O4 Nanoparticles for Antimicrobial Coatings. Appl. Surf. Sci. 2018, 455, 513–521. DOI: 10.1016/j.apsusc.2018.05.202.
  • Manju, S.; Malaikozhundan, B.; Vijayakumar, S.; Shanthi, S.; Jaishabanu, A.; Ekambaram, P.; Vaseeharan, B. Antibacterial, Antibiofilm and Cytotoxic Effects of Nigella sativa Essential Oil Coated Gold Nanoparticles. Microb. Pathog. 2016, 91, 129–135. DOI: 10.1016/j.micpath.2015.11.021.
  • Khalil, A.; Abdel-Monem, R.; Rabie, S. Promising Features for Poly(Vinyl Chloride) Enriched with Moringa oleifera: Photostability, Rheo-Mechanical, Thermal and Antibacterial Properties. J. Vinyl Addit. Technol. 2021, 27, 28–35. DOI: 10.1002/vnl.21780.
  • Khalil, A. M.; Rabie, S. T. Mechanical, Thermal and Antibacterial Performances of Acrylonitrile Butadiene Rubber/Polyvinyl Chloride Loaded with Moringa oleifera Leaves Powder. J. Therm. Anal. Calorim. 2021, 143, 2973–2981. DOI: 10.1007/s10973-019-09194-5.
  • Sharmin, E.; Kafyah, M. T.; Alzaydi, A. A.; Fatani, A. A.; Hazazzi, F. A.; Babgi, S. K.; Alqarhi, N. M.; Sindi, A. A. H.; Akram, D.; Alam, M.; et al. Synthesis and Characterization of Polyvinyl Alcohol/Corn Starch/Linseed Polyol-Based Hydrogel Loaded with Biosynthesized Silver Nanoparticles. Int. J. Biol. Macromol. 2020, 163, 2236–2247. DOI: 10.1016/j.ijbiomac.2020.09.044.
  • Periasamy, V. S.; Athinarayanan, J.; Alshatwi, A. A. Anticancer Activity of an Ultrasonic Nanoemulsion Formulation of Nigella sativa L. Essential Oil on Human Breast Cancer Cells. Ultrason. Sonochem. 2016, 31, 449–455. DOI: 10.1016/j.ultsonch.2016.01.035.
  • Sugumar, S.; Ghosh, V.; Nirmala, M. J.; Mukherjee, A.; Chandrasekaran, N. Ultrasonic Emulsification of Eucalyptus Oil Nanoemulsion: Antibacterial Activity against Staphylococcus aureus and Wound Healing Activity in Wistar Rats. Ultrason. Sonochem. 2014, 21, 1044–1049. DOI: 10.1016/j.ultsonch.2013.10.021.
  • Li, X.; Kanjwal, M. A.; Lin, L.; Chronakis, I. S. Electrospun Polyvinyl-Alcohol Nanofibers as Oral Fast-Dissolving Delivery System of Caffeine and Riboflavin. Colloids Surf. B Biointerfaces 2013, 103, 182–188. DOI: 10.1016/j.colsurfb.2012.10.016.
  • Manandhar, S.; Luitel, S.; Dahal, R. K. In Vitro Antimicrobial Activity of Some Medicinal Plants against Human Pathogenic Bacteria. J. Trop. Med. 2019, 2019, 1895340. DOI: 10.1155/2019/1895340.
  • Manley, J. B. Chapter 1 Introduction: The Five Ws of Pharmaceutical Green Chemistry. In Green Chemistry Strategies for Drug Discovery, the Royal Society of Chemistry, 2015, pp 1–12. DOI: 10.1039/9781782622659-00001
  • Tehri, N.; Vashishth, A.; Gahlaut, A.; Hooda, V. Biosynthesis, Antimicrobial Spectra and Applications of Silver Nanoparticles: Current Progress and Future Prospects. Inorg. Nano-Metal Chem. 2020, 1–19. DOI: 10.1080/24701556.2020.1862212
  • Deng, Z.; Xie, W.; Zhang, E.; He, J.; Qin, Y.; Yu, F.; Liang, Y. Biosynthesis of Silver Nanoparticles and Their Antimicrobial, Cytotoxic Activities as Wound Dressing Material in Nursing Care during Perioperative Period. Inorg. Nano-Metal Chem. 2021, 51, 792–797. DOI: 10.1080/24701556.2020.1809459.
  • Rahman, O. u.; Ahmad, S. Physico-Mechanical and Electrochemical Corrosion Behavior of Soy Alkyd/Fe3O4 Nanocomposite Coatings. RSC Adv. 2014, 4, 14936–14947. DOI: 10.1039/C3RA48068B.
  • George, J.; Sajeevkumar, V. A.; Ramana, K. V.; Sabapathy, S. N.; Siddaramaiah. Augmented Properties of PVA Hybrid Nanocomposites Containing Cellulose Nanocrystals and Silver Nanoparticles. J. Mater. Chem. 2012, 22, 22433–22439. DOI: 10.1039/c2jm35235d.
  • Mathew, S.; Snigdha, S.; Mathew, J.; Radhakrishnan, E. K. Biodegradable and Active Nanocomposite Pouches Reinforced with Silver Nanoparticles for Improved Packaging of Chicken Sausages. Food Packaging Shelf Life 2019, 19, 155–166. DOI: 10.1016/j.fpsl.2018.12.009.
  • Abdullah, Z. W.; Dong, Y. Biodegradable and Water Resistant Poly(Vinyl) Alcohol (PVA)/Starch (ST)/Glycerol (GL)/Halloysite Nanotube (HNT) Nanocomposite Films for Sustainable Food Packaging. Front. Mater. 2019, 6, 58. DOI: 10.3389/fmats.2019.00058.
  • Aktürk, A.; Erol Taygun, M.; Karbancıoğlu Güler, F.; Goller, G.; Küçükbayrak, S. Fabrication of Antibacterial Polyvinylalcohol Nanocomposite Mats with Soluble Starch Coated Silver Nanoparticles. Colloids Surf. A. 2019, 562, 255–262. DOI: 10.1016/j.colsurfa.2018.11.034.
  • Aydın, A. A.; Ilberg, V. Effect of Different Polyol-Based Plasticizers on Thermal Properties of Polyvinyl Alcohol:Starch Blends. Carbohydr. Polym. 2016, 136, 441–448. DOI: 10.1016/j.carbpol.2015.08.093.
  • Vashist, A.; Gupta, Y. K.; Ahmad, S. Interpenetrating Biopolymer Network Based Hydrogels for an Effective Drug Delivery System. Carbohydr. Polym. 2012, 87, 1433–1439. DOI: 10.1016/j.carbpol.2011.09.030.
  • Cano, A. I.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Biodegradation Behavior of Starch-PVA Films as Affected by the Incorporation of Different Antimicrobials. Polym. Degrad. Stab. 2016, 132, 11–20. DOI: 10.1016/j.polymdegradstab.2016.04.014.
  • Usman, A.; Hussain, Z.; Riaz, A.; Khan, A. N. Enhanced Mechanical, Thermal and Antimicrobial Properties of Poly(Vinyl Alcohol)/Graphene Oxide/Starch/Silver Nanocomposites Films. Carbohydr. Polym. 2016, 153, 592–599. DOI: 10.1016/j.carbpol.2016.08.026.
  • Kocoglu, E.; Kalcioglu, M. T.; Uzun, L.; Zengin, F.; Celik, S.; Serifler, S.; Gulbay, H.; Gonullu, N. In Vitro Investigation of the Antibacterial Activity of Nigella sativa Oil on Some of the Most Commonly Isolated Bacteria in Otitis Media and Externa. Eurasian J. Med. 2019, 51, 247–251. DOI: 10.5152/eurasianjmed.2019.18386.
  • Ugur, A. R.; Dagi, H. T.; Ozturk, B.; Tekin, G.; Findik, D. Assessment of in Vitro Antibacterial Activity and Cytotoxicity Effect of Nigella sativa Oil. Pharmacogn. Mag. 2016, 12, 471–474. DOI: 10.4103/0973-1296.191459.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.