188
Views
4
CrossRef citations to date
0
Altmetric
Articles

Synthesis of Fe3O4@L-proline@SO3H as a novel and reusable acidic magnetic nanocatalyst and its application for the synthesis of N-substituted pyrroles at room temperature under ultrasonic irradiation and without solvent

& ORCID Icon
Pages 1143-1152 | Received 22 Dec 2020, Accepted 11 Jul 2021, Published online: 13 Aug 2021

References

  • Karimirad, F.; Behbahani, F. K. γ-Fe2O3@ Si-(CH2)3@ Mel@(CH2)4SO3H as a Magnetically Bifunctional and Retrievable Nanocatalyst for Green Synthesis of Benzo [c] Acridine-8 (9 H)-Ones and 2-Amino-4 H-Chromenes. Inorg. Nano-Met. Chem. 2021, 51, 656–666. DOI: 10.1080/24701556.2020.1802751.
  • Fekri, L. Z.; Darya-Laal, A.-R. NiFe2O4@ SiO2@ Amino Glucose Magnetic Nanoparticle as a Green, Effective and Magnetically Separable Catalyst for the Synthesis of Xanthene-Ones under Solvent-Free Condition. Polycycl. Aromat. Compd. 2020, 40, 1539–1556. DOI: 10.1080/10406638.2018.1559207.
  • Fekri, L. Z. s-Proline Covalented Silicapropyl Modified Magnetic Nanoparticles: Synthesis, Characterization, Biological and Catalytic Activity for the Synthesis of thiazolidin-4- ones. Curr. Org. Synth. 2020, 17, 464–472. DOI: 10.2174/1570179417666200430121809.
  • Fekri, L. Z.; Hassan Pour, K.; Zeinali, S. Synthesis, Characterization and Application of Copper/Schiff-Base Complex Immobilized on KIT-6-NH2 Magnetic Nanoparticles for the Synthesis of Dihydropyridines. J. Organomet. Chem. 2020, 915, 121232. DOI: 10.1016/j.jorganchem.2020.121232.
  • Fekri, L. Z. NiFe2O4@SiO2 @amino Glucose Magnetic Nanoparticle under Solvent-free Condition: A New, mild, Simple and Effective Avenue for the Synthesis of Quinazolinone, Imidazo[1,2-a]Pyrimidinone and Novel Derivatives of Amides. Curr. Org. Synth. 2020, 17, 304–312. DOI: 10.2174/1570179417666200409151330.
  • Fekri, L. Z.; Zeinali, S. Copper/Schiff‐Base Complex Immobilized on Amine Functionalized Silica Mesoporous Magnetic Nanoparticles under Solvent‐Free Condition: A Facile and New Avenue for the Synthesis of Thiazolidin‐4‐Ones. Appl. Organomet. Chem. 2020, 34, e5629. DOI: 10.1002/aoc.5629.
  • Fekri, L. Z.; Nikpassand, M.; Khakshoor, S. N. Green, Effective and Chromatography Free Synthesis of Benzoimidazo [1, 2-a] Pyrimidine and Tetrahydrobenzo [4, 5] Imidazo [1, 2-d] Quinazolin-1 (2H)-One and Their Pyrazolyl Moiety Using Fe3O4@ SiO2@ L-Proline Reusable Catalyst in Aqueous Media. J. Organomet. Chem. 2019, 894, 18–27. DOI: 10.1016/j.jorganchem.2019.05.004.
  • Shylesh, S.; Schünemann, V.; Thiel, W. R. Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis. Angew. Chem. Int. Ed. Engl. 2010, 49, 3428–3459. DOI: 10.1002/anie.200905684.
  • Maleki, A.; Firouzi-Haji, R. L. L-Proline Functionalized Magnetic Nanoparticles: A Novel Magnetically Reusable Nanocatalyst for One-Pot Synthesis of 2,4,6-Triarylpyridines. Sci. Rep. 2018, 8, 17303–17308. DOI: 10.1038/s41598-018-35676-x.
  • Firouzi‐Haji, R.; Maleki, A. L‐Proline‐Functionalized Fe3O4 Nanoparticles as an Efficient Nanomagnetic Organocatalyst for Highly Stereoselective One‐Pot Two‐Step Tandem Synthesis of Substituted Cyclopropanes. ChemSelect 2019, 4, 853–857. DOI: 10.1002/slct.201802608.
  • Maleki, A.; Azadegan, S. Preparation and Characterization of Silica-Supported Magnetic Nanocatalyst and Application in the Synthesis of 2-Amino-4 H-Chromene-3-Carbonitrile Derivatives. Inorg. Nano-Met. Chem. 2017, 47, 917–924. DOI: 10.1080/24701556.2016.1241266.
  • Maleki, A. Green Oxidation Protocol: Selective Conversions of Alcohols and Alkenes to Aldehydes, Ketones and Epoxides by Using a New Multiwall Carbon Nanotube-Based Hybrid Nanocatalyst via Ultrasound Irradiation. Ultrason. Sonochem. 2018, 40, 460–464. DOI: 10.1016/j.ultsonch.2017.07.020.
  • Maleki, A.; Aghaei, M.; Hafizi-Atabak, H. R.; Ferdowsi, M. Ultrasonic Treatment of CoFe2O4@B2O3-SiO2 as a New Hybrid Magnetic Composite Nanostructure and Catalytic Application in the Synthesis of Dihydroquinazolinones. Ultrason. Sonochem. 2017, 37, 260–266. DOI: 10.1016/j.ultsonch.2017.01.022.
  • Maleki, A.; Aghaei, M. Sonochemical Rate Enhanced by a New Nanomagnetic Embedded Core/Shell Nanoparticles and Catalytic Performance in the Multicomponent Synthesis of Pyridoimidazoisoquinolines. Ultrason. Sonochem. 2017, 38, 115–119. DOI: 10.1016/j.ultsonch.2017.03.014.
  • Maleki, A.; Aghaei, M. Ultrasonic Assisted Synergetic Green Synthesis of Polycyclic Imidazo(thiazolo)pyrimidines by Using Fe3O4@clay Core-Shell. Ultrason. Sonochem. 2017, 38, 585–589. DOI: 10.1016/j.ultsonch.2016.08.024.
  • Maleki, A.; Aghaie, M. Ultrasonic-Assisted Environmentally-Friendly Synergetic Synthesis of Nitroaromatic Compounds in Core/Shell Nanoreactor: A Green Protocol. Ultrason. Sonochem. 2017, 39, 534–539. DOI: 10.1016/j.ultsonch.2017.05.031.
  • Maleki, A.; Rahimi, J.; Demchuk, O. M.; Wilczewska, A. Z.; Jasiński, R. Green in Water Sonochemical Synthesis of Tetrazolopyrimidine Derivatives by a Novel Core-Shell Magnetic Nanostructure Catalyst. Ultrason. Sonochem. 2018, 43, 262–271. DOI: 10.1016/j.ultsonch.2017.12.047.
  • Maleki, A. An Efficient Magnetic Heterogeneous Nanocatalyst for the Synthesis of Pyrazinoporphyrazine Macrocycles. Polycycl. Aromat. Compd. 2018, 38, 402–409. DOI: 10.1080/10406638.2016.1221836.
  • Maleki, A. One-Pot Three-Component Synthesis of Pyrido [2′,1′:2,3] Imidazo [4, 5-c] Isoquinolines Using Fe3O4@ SiO2–OSO3H as an Efficient Heterogeneous Nanocatalyst. RSC Adv. 2014, 2, 64169–64173. DOI: 10.1039/C4RA10856F.
  • Maleki, A. One-Pot Multicomponent Synthesis of Diazepine Derivatives Using Terminal Alkynes in the Presence of Silica-Supported Superparamagnetic Iron Oxide Nanoparticles. Tetrahedron Lett. 2013, 54, 2055–2059. DOI: 10.1016/j.tetlet.2013.01.123.
  • Maleki, A. Fe3O4/SiO2 Nanoparticles: An Efficient and Magnetically Recoverable Nanocatalyst for the One-Pot Multicomponent Synthesis of Diazepines. Tetrahedron 2012, 68, 7827–7833. DOI: 10.1016/j.tet.2012.07.034.
  • Malinka, W.; Sieklucka-Dziuba, M.; Rajtar, G.; Rubaj, A.; Kleinrok, Z. Synthesis and Pharmacological Screening of Some N-(4-Substituted-Piperazin-1-Ylalkyl)-3, 4-Pyrroledicarboximides. Farmaco 1999, 54, 390–401. DOI: 10.1016/S0014-827X(99)00045-2.
  • Malinka, W.; Kaczmarz, M.; Redzicka, A.; Filipek, B.; Sapa, J. Synthesis and Analgesic Action of N-(Substituted-Ethyl) Pyrrole-3, 4-Dicarboximides. Farmaco 2005, 60, 15–22. DOI: 10.1016/j.farmac.2004.10.002.
  • Malinka, W.; Dziuba, S. M.; Rajtar, G.; Rejdak, R.; Rejdak, K.; Kleinrok, Z. Synthesis of Some N-Substituted 3, 4-Pyrroledicarboximides as Potential CNS Depressive Agents. Pharmazie 2000, 55, 9–16. PMID:10683864
  • Seref, D.; Ahmet, K. C.; Nuri, K. Synthesis and Antibacterial Activities of Some 1-[2-(Substituted Pyrrol-1-yl) Ethyl]-2-Methyl-5-Nitroimidazole Derivatives. Eur. J. Med. Chem. 1999, 34, 275. DOI: 10.1016/S0223-5234(99)80062-2.
  • Deidda, D.; Lampis, G.; Fioravanti, R.; Biava, M.; Porretta, G. C.; Zanetti, S.; Pompei, R. Bactericidal Activities of the Pyrrole Derivative BM212 against Multidrug-Resistant and Intramacrophagic Mycobacterium tuberculosis Strains. Antimicrob. Agents Chemother. 1998, 42, 3035–3037. DOI: 10.1128/AAC.42.11.3035.
  • Biava, M.; Rossella, F.; Giulio, C. P.; Delia, D.; Carlo, M.; Pompei, R. 2-Naphthylcarbapenems: Broad Spectrum Antibiotics with Enhanced Potency against MRSA. Bioorg. Med. Chem. Lett. 1999, 9, 2893. DOI: 10.1016/S0960-894X(99)00500-4.
  • Brana, M. F.; Fernandez, A.; Garrido, M.; Rodriguez, M. L. L.; Morcillo, M. J.; Sanz, A. M. Synthesis, Structure and Cytostatic Activity of a Series of N-substituted 3,4-diphenyl-1H-pyrrole-2,5-diones. Chem. Pharm. Bull. (Tokyo) 1989, 37, 2710–2712. DOI: 10.1248/cpb.37.2710.
  • Cocco, M. T.; Congiu, C.; Onnis, V. Synthesis and In Vitro Antitumoral Activity of New N-Phenyl-3-Pyrrolecarbothioamides. Bioorg. Med. Chem. 2003, 11, 495–503. DOI: 10.1016/S0968-0896(02)00465-0.
  • Sorokina, I. K.; Andreeva, N. I.; Golovina, S. M. Synthesis and Anticonvulsant Activity of 3-Dimethylaminomethyl-8-Oxoindeno-[2, 1-b] Pyrroles. Pharm. Chem. J. 1989, 23, 975–977. DOI: 10.1007/BF00764708.
  • Carson, J. R.; Carmosin, R. J.; Pitis, P. M.; Vaught, J. L.; Almond, H. R.; Stables, J. P.; Wolf, H. H.; Swinyard, E. A.; White, H. S. Aroyl(aminoacyl)pyrroles, a New Class of Anticonvulsant Agents. J. Med. Chem. 1997, 40, 1578–1584. DOI: 10.1021/jm9606655.
  • Shibo, J.; Hong, L.; Shuwen, L.; Qian, Z.; Yuxian, H.; Asim, K. N-Substituted Pyrrole Derivatives as Novel Human Immunodeficiency Virus Type 1 Entry Inhibitors That Interfere with the gp41 Six-Helix Bundle Formation and Block Virus Fusion. Antimicrob. Agents Chemother. 2004, 48, 4349–4359. DOI: 10.1128/AAC.48.11.4349-4359.2004.
  • Samadi, M.; Behbahani, F. K. The Application of Iron (III) Phosphate in the Synthesis of N-Substituted Pyrroles. J. Chil. Chem. Soc. 2015, 60, 2881–2884. DOI: 10.4067/S0717-97072015000200004.
  • Paal, C. Ueber Die Derivate Des. Ber. Dtsch. Chem. Ges. 1884, 17, 2756–2767. DOI: 10.1002/cber.188401702228.
  • Knorr, L. Synthese Von Furfuranderivaten Aus Dem Diacetbernsteinsäureeste. Ber. Dtsch. Chem. Ges. 1884, 17, 2863–2870. DOI: 10.1002/cber.188401702254.
  • Arabpourian, K.; Behbahani, F. K. Synthesis of Pyrrole Derivatives Promoted by Fe(ClO4)3/SiO2 as an Environmentally Friendly Catalyst. Russ. J. Org. Chem. 2019, 55, 682–685. DOI: 10.1134/S1070428019050166.
  • Hasanzadeh, F.; Behbahani, F. K. Synthesis of 8-Aryl-7 H-Acenaphtho [1, 2-d] Imidazoles Using Fe3O4NPs@GO@C4H8SO3H as a Green and Recyclable Magnetic Nanocatalyst. Russ. J. Org. Chem. 2020, 56, 1070–1076. DOI: 10.1134/S1070428020060160.
  • Behbahani, F. K.; Rezaee, E.; Fakhroueian, Z. Synthesis of 2-Substituted Benzimidazoles Using 25% Co/Ce-ZrO2 as a Heterogeneous and Nanocatalyst. Catal. Lett. 2014, 144, 2184–2190. DOI: 10.1007/s10562-014-1372-8.
  • Biklarian, H.; Behbahani, F. K.; Fakhroueian, Z. 22%Co/CeO2-ZrO2-Catalyzed Synthesis of 1, 2, 3, 4-Tetrahydro-2-Pyrimidinones and-Thiones. LOC. 2012, 9, 580–584. DOI: 10.2174/157017812802850159.
  • Behbahani, F. K.; Ziaei, P.; Fakhroueian, Z.; Doragi, N. An Efficient Synthesis of 2-Arylbenzimidazoles from o-Phenylenediamines and Arylaldehydes Catalyzed by Fe/CeO2–ZrO2 Nano Fine Particles. Monatsh. Chem. 2011, 142, 901–906. DOI: 10.1007/s00706-011-0523-5.
  • Patil, V.; Sinaha, R.; Masand, N.; Jain, J. Synthesis and Anticonvulsant Activities of Small N-Substituted 2, 5-Dimethyl Pyrrole and Bipyrrole. Dig. J. Nanomater. Bios. 2009, 4, 471.
  • De, S. K. Ruthenium (III) Chloride as a Novel and Efficient Catalyst for the Synthesis of Substituted Pyrroles under Solvent-Free Conditions. Catal. Lett. 2008, 124, 174–177. DOI: 10.1007/s10562-008-9461-1.
  • Ghorbani-Vaghei, R.; Veisi, H. One-Pot Synthesis of Substituted Pyrroles with N, N, N’, N’-Tetrachlorobenzene-1, 3-Disulphonamide and N, N’-Diiodo-N, N’-1, 2-Ethanediylbis (p-Toluenesulphonamide) as Novel Catalytic Reagents. South Afr. J. Chem. 2009, 62, 33.
  • www.chemspider.com.
  • Veisi, H. Silica Sulfuric Acid (SSA) as a Solid Acid Heterogeneous Catalyst for One-Pot Synthesis of Substituted Pyrroles under Solvent-Free Conditions at Room Temperature. Tetrahedron Lett. 2010, 51, 2109–2114. DOI: 10.1016/j.tetlet.2010.02.052.
  • Wu, H.; Zheng, Z.; Jin, C.; Zhang, X.; Su, W.; Chen, J. An Approach to the Paal–Knorr Pyrroles Synthesis Catalyzed by Sc(OTf)3 under Solvent-Free Conditions. Tetrahedron Lett. 2006, 47, 5383. DOI: 10.1016/j.tetlet.2006.05.085.
  • Azizi, K.; Heydari, A. A. Simple, Green, One-Pot Synthesis of Magneticnanoparticle-Supported Proline without Any Source of Supplemental Linkers and Application as a Highly Efficient Base Catalyst. RSC Adv. 2014, 4, 6508–6512. DOI: 10.1039/c3ra46419a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.