298
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synthesis, X-ray characterization and evaluation of potent anti-angiogenic activity of a novel copper(II)-imidazole-bipyridyl complex

ORCID Icon, &
Pages 1153-1160 | Received 29 Dec 2020, Accepted 11 Jul 2021, Published online: 27 Aug 2021

References

  • Walsh, D. A.; Pearson, C. I. Angiogenesis in the Pathogenesis of Inflammatory Joint and Lung Diseases. Arthritis Res. 2001, 3, 147–153. DOI: 10.1186/ar292.
  • Ribatti, D. History of Research on Tumor Angiogenesis. Springer: Dordrecht, Netherlands, 2009; pp 1–17. DOI: 10.1007/978-1-4020-9563-4.
  • Huang, Y.; Nan, G. Oxidative Stress-Induced Angiogenesis. J. Clin. Neurosci. 2019, 63, 13–16. DOI: 10.1016/j.jocn.2019.02.019.
  • Rajabi, M.; Mousa, S. A. The Role of Angiogenesis in Cancer Treatment. Biomedicines 2017, 5, 34. DOI: 10.3390/biomedicines5020034.
  • Ribatti, D. The Chick Embryo Chorioallantoic Membrane (CAM). A Multifaceted Experimental Model. Mech. Dev. 2016, 141, 70–77. DOI: 10.1016/j.mod.2016.05.003.
  • Yehya, A. H. S.; Asif, M.; Petersen, S. H.; Subramaniam, A. V.; Kono, K.; Majid, A. M. S. A.; Oon, C. E. Angiogenesis: Managing the Culprits behind Tumorigenesis and Metastasis. Medicina 2018, 54, 8. DOI: 10.3390/medicina54010008.
  • Bürgermeister, J.; Paper, D. H.; Vogl, H.; Linhardt, R. J.; Franz, G. LaPSvS1, a (1→3)-β-Galactan Sulfate and Its Effect on Angiogenesis in Vivo and in Vitro. Carbohydr. Res. 2002, 337, 1459–1466. DOI: 10.1016/S0008-6215(02)00163-5.
  • Lugano, R.; Ramachandran, M.; Dimberg, A. Tumor Angiogenesis: Causes, Consequences, Challenges and Opportunities. Cell Mol. Life Sci. 2020, 77, 1745–1770. DOI: 10.1007/s00018-019-03351-7.
  • Cook, K. M.; Figg, W. D. Angiogenesis Inhibitors: Current Strategies and Future Prospects. CA Cancer J. Clin. 2010, 60, 222–243. DOI: 10.3322/caac.20075.
  • Hall, A. P. The Role of Angiogenesis in Cancer. Comp. Clin. Path. 2005, 13, 95–99. DOI: 10.1007/s00580-004-0533-3.
  • Fei, B.; Tu, S.; Wei, Z.; Wang, P.; Qiao, C.; Chen, Z. Optically Pure Chiral Copper(II) Complexes of Rosin Derivative as Attractive Anticancer Agents with Potential Anti-Metastatic and Anti-Angiogenic Activities. Eur. J. Med. Chem. 2019, 176, 175–186. DOI: 10.1016/j.ejmech.2019.05.030.
  • Bruijnincx, P. C. A.; Sadler, P. J. New Trends for Metal Complexes with Anticancer Activity. Curr. Opin. Chem. Biol. 2008, 12, 197–206. DOI: 10.1016/j.cbpa.2007.11.013.
  • Frezza, M.; Hindo, S.; Chen, D.; Davenport, A.; Schmitt, S.; Tomco, D.; Dou, Q. P. Novel Metals and Metal Complexes as Platforms for Cancer Therapy. Curr. Pharm. Des. 2010, 16, 1813–1825. DOI: 10.2174/138161210791209009.
  • Selvaganapathy, M.; Raman, N. Pharmacological Activity of a Few Transition Metal Complexes: A Short Review. J. Chem. Biol. Ther. 2016, 01, 108. DOI: 10.4172/2572-0406.1000108.
  • Kareem, A.; Zafar, H.; Sherwani, A.; Mohammad, O.; Khan, T. A. Synthesis, Characterization and in Vitro Anticancer Activity of 18-Membered Octaazamacrocyclic Complexes of Co(II), Ni(II), Cd(II) and Sn(II). J. Mol. Struct. 2014, 1075, 17–25. DOI: 10.1016/j.molstruc.2014.06.073.
  • El-Boraey, H. A. Coordination Behavior of Tetraaza [N4] Ligand towards Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) Complexes: Synthesis, Spectroscopic Characterization and Anticancer Activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 97, 255–262. DOI: 10.1016/j.saa.2012.05.077.
  • Bahron, H.; Khaidir, S. S.; Tajuddin, A. M.; Ramasamy, K.; Yamin, B. M. Synthesis, Characterization and Anticancer Activity of Mono- and Dinuclear Ni(II) and Co(II) Complexes of a Schiff Base Derived from o-Vanillin. Polyhedron 2019, 161, 84–92. DOI: 10.1016/j.poly.2018.12.055.
  • Ashok, U. P.; Kollur, S. P.; Anil, N.; Arun, B. P.; Jadhav, S. N.; Sarsamkar, S.; Helavi, V. B.; Srinivasan, A.; Kaulage, S.; Veerapur, R.; et al. Preparation, Spectroscopic Characterization, Theoretical Investigations, and in Vitro Anticancer Activity of Cd(II), Ni(II), Zn(II), and Cu(II) Complexes of 4(3H)-Quinazolinone-Derived Schiff Base. Molecules 2020, 25, 5973. DOI: 10.3390/molecules25245973.
  • Li, Y.; Dong, J.; Zhao, P.; Hu, P.; Yang, D.; Gao, L.; Li, L. Synthesis of Amino Acid Schiff Base Nickel (II) Complexes as Potential Anticancer Drugs in Vitro. Bioinorg. Chem. Appl. 2020, 2020, 8834859. DOI: 10.1155/2020/8834859.
  • Revathi, N.; Sankarganesh, M.; Rajesh, J.; Raja, J. D. Biologically Active Cu(II), Co(II), Ni(II) and Zn(II) Complexes of Pyrimidine Derivative Schiff Base: DNA Binding, Antioxidant, Antibacterial and in Vitro Anticancer Studies. J. Fluoresc. 2017, 27, 1801–1814. DOI: 10.1007/s10895-017-2118-y.
  • Shi, X.; Chen, Z.; Wang, Y.; Guo, Z.; Wang, X. Hypotoxic Copper Complexes with Potent Anti-Metastatic and Anti-Angiogenic Activities against Cancer Cells. Dalton Trans. 2018, 47, 5049–5054. DOI: 10.1039/C8DT00794B.
  • Gandin, V.; Trenti, A.; Porchia, M.; Tisato, F.; Giorgetti, M.; Zanusso, I.; Trevisi, L.; Marzano, C. Homoleptic Phosphino Copper(I) complexes with in Vitro and in Vivo Dual Cytotoxic and Anti-Angiogenic Activity. Metallomics 2015, 7, 1497–1507. DOI: 10.1039/c5mt00163c.
  • Oikawa, T.; Hirotani, K.; Ogasawara, H.; Katayama, T.; Ashino-Fuse, H.; Shimamura, M.; Iwaguchi, T.; Nakamura, O. Inhibition of Angiogenesis by Bleomycin and Its Copper Complex. Chem. Pharm. Bull. 1990, 38, 1790–1792. DOI: 10.1248/cpb.38.1790.
  • Nagababu, P.; Barui, A. K.; Thulasiram, B.; Devi, C. S.; Satyanarayana, S.; Patra, C. R.; Sreedhar, B. Antiangiogenic Activity of Mononuclear Copper(II) Polypyridyl Complexes for the Treatment of Cancers. J. Med. Chem. 2015, 58, 5226–5241. DOI: 10.1021/acs.jmedchem.5b00651.
  • Urso, E.; Maffia, M. Behind the Link between Copper and Angiogenesis: Established Mechanisms and an Overview on the Role of Vascular Copper Transport Systems. J. Vasc. Res. 2015, 52, 172–196. DOI: 10.1159/000438485.
  • Rodić, M. V.; Leovac, V. M.; Jovanović, L. S.; Spasojević, V.; Joksović, M. D.; Stanojković, T.; Matić, I. Z.; Vojinović-Ješić, L. S.; Marković, V. Synthesis, Characterization, Cytotoxicity and Antiangiogenic Activity of Copper(II) Complexes with 1-Adamantoyl Hydrazone Bearing Pyridine Rings. Eur. J. Med. Chem. 2016, 115, 75–81. DOI: 10.1016/j.ejmech.2016.03.003.
  • Qin, X. Y.; Yang, L. C.; Le, F. L.; Yu, Q. Q.; Sun, D. D.; Liu, Y. N.; Liu, J. Structures and Anti-Cancer Properties of Two Binuclear Copper Complexes. Dalton Trans. 2013, 42, 14681–14684. DOI: 10.1039/c3dt51548f.
  • Qin, X. Y.; Wang, Y.; Yang, X.; Liang, J.; Liu, J.; Luo, Z. Synthesis, Characterization, and Anticancer Activity of Two Mixed Ligand Copper(II) Complexes by Regulating the VEGF/VEGFR2 Signaling Pathway. Dalton Trans. 2017, 46, 16446–16454. DOI: 10.1039/c7dt03242k.
  • Nath, P.; Bharty, M. K.; Dani, R. K.; Tomar, M. S.; Acharya, A. Mn(II), Co(III), Ni(II), Cd(II) and Cu(II) Complexes of 2‐Thenoyltrifluoroacetone: Syntheses, Structures, Photoluminescence, Thermal, Electrochemical and Antitumor Studies on Dalton’s Lymphoma Cells. ChemistrySelect 2017, 2, 10449–10458. DOI: 10.1002/slct.201702036.
  • Hussain, A.; AlAjmi, M. F.; Rehman, M. T.; Amir, S.; Husain, F. M.; Alsalme, A.; Siddiqui, M. A.; AlKhedhairy, A. A.; Khan, R. A. Copper(II) Complexes as Potential Anticancer and Nonsteroidal Anti-Inflammatory Agents: In Vitro and in Vivo Studies. Sci. Rep. 2019, 9, 5237. DOI: 10.1038/s41598-019-41063-x.
  • Marzano, C.; Pellei, M.; Tisato, F.; Santini, C. Copper Complexes as Anticancer agents. Anticancer Agents Med. Chem. 2009, 9, 185–211. DOI: 10.2174/187152009787313837.
  • Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Advances in Copper Complexes as Anticancer Agents. Chem. Rev. 2014, 114, 815–862. DOI: 10.1021/cr400135x.
  • Denoyer, D.; Clatworthy, S. A. S.; Cater, M. A. Copper Complexes in Cancer Therapy. Met. Ions Life Sci. 2018, 18, 469–506. DOI: 10.1515/9783110470734-022.
  • Zhang, Z.; Wang, H.; Yan, M.; Wang, H.; Zhang, C. Novel Copper Complexes as Potential Proteasome Inhibitors for Cancer Treatment (Review)). Mol. Med. Rep. 2017, 15, 3–11. DOI: 10.3892/mmr.2016.6022.
  • Cadavid-Vargas, J. F.; Leon, I. E.; Etcheverry, S. B.; Santi, E.; Torre, M. H.; Di Virgilio, A. L. Copper(II) Complexes with Saccharinate and Glutamine as Antitumor Agents: Cytoand Genotoxicity in Human Osteosarcoma Cells. Anticancer Agents Med. Chem. 2017, 17, 424–433. DOI: 10.2174/1871520616666160513130204.
  • Anjum, R.; Palanimuthu, D.; Kalinowski, D. S.; Lewis, W.; Park, K. C.; Kovacevic, Z.; Khan, I. U.; Richardson, D. R. Synthesis, Characterization, and in Vitro Anticancer Activity of Copper and Zinc Bis(Thiosemicarbazone) Complexes. Inorg. Chem. 2019, 58, 13709–13723. DOI: 10.1021/acs.inorgchem.9b01281.
  • Öztürk, A. A.; Kıyan, H. T. Treatment of Oxidative Stress-Induced Pain and Inflammation with Dexketoprofen Trometamol Loaded Different Molecular Weight Chitosan Nanoparticles: Formulation, Characterization and Anti-Inflammatory Activity by Using in Vivo HET-CAM Assay. Microvasc. Res. 2020, 128, 103961. DOI: 10.1016/j.mvr.2019.103961.
  • Kıyan, H. T. Bazı Hypericum türlerinin uçucu yağ bileşimleri ve antianjiyojenik aktiviteleri. Yüksek lisans tezi. Sağlık Bilimleri Enstitüsü, Farmakognozi Anabilim dalı: Eskişehir, 2010.
  • Cimpean, A. M.; Ribatti, D.; Raica, M. The Chick Embryo Chorioallantoic Membrane as a Model to Study Tumor Metastasis. Angiogenesis 2008, 11, 311–319. DOI: 10.1007/s10456-008-9117-1.
  • Ribatti, D.; Nico, B.; Vacca, A.; Roncali, L.; Burri, P. H.; Djonov, V. Chorioallantoic Membrane Capillary Bed: A Useful Target for Studying Angiogenesis and anti-Angiogenesis in Vivo. Anat. Rec. 2001, 264, 317–324. DOI: 10.1002/ar.10021.
  • Kue, C. S.; Tan, K. Y.; Lam, M. L.; Lee, H. B. Chick Embryo Chorioallantoic Membrane (CAM): An Alternative Predictive Model in Acute Toxicological Studies for Anti-Cancer Drugs. Exp. Anim. 2015, 64, 129–138. DOI: 10.1538/expanim.14-0059.
  • Özgürtaş, T. Anjiyogenezde bir in-Vivo Model: Civciv koriyoallantoik membran. Gülhane Tıp Dergisi 2009, 51, 67–69.
  • Qiu, L.; Yang, H.; Wang, T.; Liu, H.; Lin, J. Lipophilicity-Dependent Ruthenium N-Heterocyclic Carbene Complexes as Potential Anticancer Agents. Dalton Trans. 2015, 44, 7324. DOI: 10.1039/c5dt00169b.
  • SMART, Bruker AXS, 2000.
  • Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal Structure Determination. Acta Crystallogr. A Found Adv. 2015, 71, 3–8. DOI: 10.1107/S2053273314026370.
  • Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. A 2008, 64, 112–122. DOI: 10.1107/S0108767307043930.
  • Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; Streek, J. Mercury: Visualization and Analysis of Crystal Structures. J. Appl. Crystallogr. 2006, 39, 453–457. DOI: 10.1107/S002188980600731X.
  • Krenn, L.; Paper, D. H. Inhibition of Angiogenesis and Inflammation by an Extract of Red Clover (Trifolium pratense L.). Phytomedicine 2009, 16, 1083–1088. DOI: 10.1016/j.phymed.2009.05.017.
  • Kıyan, H. T.; Demirci, B.; Başer, K. H. C.; Demirci, F. The in Vivo Evaluation of Anti-Angiogenic Effects of Hypericum Essential Oils Using the Chorioallantoic Membrane Assay. Pharm. Biol. 2014, 52, 44–50. DOI: 10.3109/13880209.2013.810647.
  • Gurel Gurevin, E.; Kiyan, H. T.; Esener, O. B. B.; Aydinlik, S.; Uvez, A.; Ulukaya, E.; Dimas, K.; Armutak, E. I. Chloroquine Used in Combination with Chemotherapy Synergistically Suppresses Growth and Angiogenesis in Vitro and in Vivo. Anticancer Res. 2018, 38, 4011–4020. DOI: 10.21873/anticanres.12689.
  • Kumar, M.; Mogha, N. K.; Kumar, G.; Hussain, F.; Masram, D. T. Biological Evaluation of Copper(II) Complex with Nalidixic Acid and 2,2′-Bipyridine (Bpy). Inorg. Chim. Acta 2019, 490, 144–154. DOI: 10.1016/j.ica.2019.03.011.
  • Liu, Y.-X.; Mo, H.-W.; Lv, Z.-Y.; Shen, F.; Zhang, C.-L.; Qi, Y.-Y.; Mao, Z.-W.; Le, X.-Y. DNA Binding, Crystal Structure, Molecular Docking Studies and Anticancer Activity Evaluation of a Copper(II) Complex. Transit. Met. Chem. 2018, 43, 259–271. DOI: 10.1007/s11243-018-0211-y.
  • Ahmadi, R. A.; Hasanvand, F.; Bruno, G.; Rudbari, H. A.; Amani, S. Synthesis, Spectroscopy, and Magnetic Characterization of Copper(II) and Cobalt(II) Complexes with 2-Amino-5-Bromopyridine as Ligand. ISRN Inorg. Chem. 2013, 2013, 1–7. DOI: 10.1155/2013/426712.
  • Hema, M. K.; Warad, I.; Karthik, C. S.; Zarrouk, A.; Kumara, K.; Pampa, K. J.; Mallu, P.; Lokanath, N. K. XRD/DFT/HSA-Interactions in Cu(II)Cl/Phen/ß-Diketonato Complex: Physicochemical, Solvatochromism, Thermal and DNA-Binding Analysis. J. Mol. Struct. 2020, 1210, 128000. DOI: 10.1016/j.molstruc.2020.128000.
  • Wilson, T. D.; Steck, W. F. A Modified HET-CAM Assay Approach to the Assessment of Anti-Irritant Properties of Plant Extracts. Food Chem. Toxicol. 2000, 38, 867–872. DOI: 10.1016/S0278-6915(00)00091-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.