139
Views
3
CrossRef citations to date
0
Altmetric
Articles

Application of (MWCNTs)-COOH/CeO2 hybrid as an efficient catalyst for the synthesis of some nitrogen-containing organic compounds

, &
Pages 1173-1182 | Received 12 Feb 2021, Accepted 11 Jul 2021, Published online: 16 Aug 2021

References

  • Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman, S. Review: Biologically Active Pyrazole Derivatives New. J. Chem 2017, 41, 16–41. DOI: 10.1039/C6NJ03181A.
  • Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y. N.; Al-Aizari, F. A.; Ansar, M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018, 23, 134. 86 pages). DOI: 10.3390/molecules23010134.
  • Dwivedi, J.; Sharma, S.; Jain, S.; Singh, A. The Synthetic and Biological Attributes of Pyrazole Derivatives: A Review. Mini Rev Med Chem 2018, 18, 918–947. DOI: 10.2174/1389557517666170927160919.
  • Nami, N.; Neumuller, B.; Heravi, M. M.; Haghdadi, M. Synthesis and Crystal Structure of Chiral Hydroquinoxaline Derivatives. Mendeleev Commun 2008, 3, 153–155. DOI: 10.1016/j.mencom.2008.05.014.
  • Heravi, M. M.; Nami, N.; Seifi, N.; Oskooie, H. A.; Hekmatshoar, R. Microwave-Assisted Synthesis of Substituted Pyrazoles and Pyrazolo [3, 4-d]Thiopyrimidines. Phosphorus, Sulfur, and Silicon and the Related Elements 2006, 181, 591–599. DOI: 10.1080/10426500500269646.
  • De, K.; Bhaumik, A.; Banerjee, B.; Mukhopadhyay, C. An Expeditious and Efficient Synthesis of Spiro-Pyrazolo[3,4-b]Pyridines Catalysed by Recyclable Mesoporous Aluminosilicate Nanoparticles in Aqueous-Ethanol. Tetrahedron Lett. 2015, 56, 1614–1618. DOI: 10.1016/j.tetlet.2015.01.163.
  • De, K.; Bhanja, P.; Bhaumik, A.; Mukhopadhyay, C. An Expeditious Synthesis of Spiro[Chromeno[2,3-c]Pyrazole-4,3′-Indolin]-2′5-Diones Catalysed by Recyclable Spinel ZnFe2O4Nanopowder. Chemistry Select 2017, 2, 4857–4865. DOI: 10.1002/slct.201700643.
  • Meshkani, F.; Rezaei, M. Effect of Process Parameters on the Synthesis of Nanocrystalline Magnesium Oxide with High Surface Area and Plate-Like Shape by Surfactant Assisted Precipitation Method [J]. Powder Tech 2010, 199, 144–148. DOI: 10.1016/j.powtec.2009.12.014.
  • Sreethawong, T.; Ngamsinlapasathian, S.; Yoshikawa, S. Crystalline Mesoporous Nb2O5 Nanoparticles Synthesized via a Surfactant-Modified Sol–Gel Process. Mater Lett 2012, 78, 135–138. DOI: 10.1016/j.matlet.2012.03.045.
  • Das, S.; Dowding, J. M.; Klump, K. E.; McGinnis, J. F.; Self, W.; Seal, S. Cerium Oxide Nanoparticles: Applications and Prospects in Nanomedicine. Nanomedicine (Lond) 2013, 8, 1483–1508. DOI: 10.2217/nnm.13.133.
  • He, L.; Su, Y.; Lanhong, J.; Sh+++I, S. Recent Advances of Cerium Oxide Nanoparticles in Synthesis, Luminescence and Biomedical Studies: A Review. J. Rare. Earths 2015, 33, 791–799. DOI: 10.1016/S1002-0721(14)60486-5.
  • Faisal, M.; Khan, S. B.; Rahman, M. M.; Jamal, A.; Akhtar, K.; Abdullah, M. M. Role of ZnO-CeO2 Nanostructures as a Photo-Catalyst and Chemi-Sensor. J. Mater. Sci. Technol 2011, 27, 594–600. DOI: 10.1016/S1005-0302(11)60113-8.
  • Walkey, C.; Das, S.; Seal, S.; Erlichman, J.; Heckman, K.; Ghibelli, L.; Traversa, E.; McGinnis, J. F.; Self, W. T. Catalytic Properties and Biomedical Applications of Cerium Oxide Nanoparticles. Environ Sci Nano 2015, 2, 33–53. DOI: 10.1039/C4EN00138A.
  • Faisal, M.; Khan, S. B.; Rahman, M. M.; Jamal, A.; Asiri, A. M.; Abdullah, M. M. Smart Chemical Sensor and Active Photo-Catalyst for Environmental Pollutants. Chem. Engineer. J 2011, 173, 178–184. DOI: 10.1016/j.cej.2011.07.067.
  • Kubik, T.; Bogunia-Kubik, K.; Sugisaka, M. Nanotechnology on Duty in Medical Applications. Curr. Pharm. Biotechnol. 2005, 6, 17–33. DOI: 10.2174/1389201053167248.
  • Derevyannikova, E. A.; Kardash, T. Y.; Kibis, L. S.; Slavinskaya, E. M.; Svetlichnyi, V. A.; Stonkus, O. A.; Ivanova, A. S.; Boronin, A. I. The Structure and Catalytic Properties of Rh-Doped CeO2 Catalysts. Phys. Chem. Chem. Phys. 2017, 19, 31883–31898. DOI: 10.1039/C7CP06573F.
  • Peng, X.; Luan, Z.; Ding, J.; Di, Z.; Li, Y.; Tian, B. Ceria Nanoparticles Supported on Carbon Nanotubes for the Removal of Arsenate from Water. Mater. Lett. 2005, 59, 399–403. DOI: 10.1016/j.matlet.2004.05.090.
  • Keyvanloo, K.; Mohamadalizadeh, A.; Towfighi, J. A. Novel CeO2 Supported on Carbon Nanotubes Coated with SiO2 Catalyst for Catalytic Cracking of Naphtha. Appl. Catal, A. 2012, 417–418, 53–58. DOI: 10.1016/j.apcata.2011.12.024.
  • Lu, Y.; Yu, G.; Wei, X.; Zhan, C.; Jeon, J.-W.; Wang, X.; Jeffryes, C.; Guo, Z.; Wei, S.; Wujcik, E. K. Fabric/Multi-Walled Carbon Nanotube Sensor for Portable on-Site Copper Detection in Water. Adv. Compos. Hybrid Mater. 2019, 2, 711–719. DOI: 10.1007/s42114-019-00122-7.
  • Roldo, M.; Fatouros, D. G.; Hallaj, R.; Deng, L.; Zhu, C.; Dong, S.; Zhuo, Y.; Strano, M. S.; Hara, K.; Haniu, H.; et al. Biomedical Applications of Carbon Nanotubes. Annu. Rep. Prog. Chem, Sect. C: Phys. Chem. 2013, 109, 10–35. DOI: 10.1039/c3pc90010j.
  • Mehrabi, M.; Parvin, P.; Reyhani, A.; Mortazavi, S. Z. Hydrogen Storage in Multi-Walled Carbon Nanotubes Decorated with Palladium Nanoparticles Using Laser Ablation/Chemical Reduction Methods. Mater. Res. Express 2017, 4, 095030. DOI: 10.1088/2053-1591/aa87f6.
  • Bai, W.; Wu, Z.; Mitra, S.; Brown, J. M. Effects of Multiwalled Carbon Nanotube Surface Modification and Purification on Bovine Serum Albumin Binding and Biological Responses. J. Nanomater. 2016, 2016, 1–10. DOI: 10.1155/2016/2159537.
  • Kumar, V. L.; Ntim, S. A.; Sae-Khow, O.; Janardhana, C.; Lakshminarayanan, V.; Mitra, S. Electro-Catalytic Activity of Multiwall Carbon Nanotube-Metal (Pt or Pd) Nanohybrid Materials Synthesized Using Microwave-Induced Reactions and Their Possible Use in Fuel Cells. Electrochim. Acta. 2012, 83, 40–46. DOI: 10.1016/j.electacta.2012.07.098.
  • Hai, T. L.; Hung, L. C.; Phuong, T. T. B.; Ha, B. T. T.; Nguyen, B. S.; Hai, T. D.; Nguyen, V. H. Multiwall Carbon Nanotube Modified by Antimony Oxide (Sb2O3/MWCNTs) Paste Electrode for the Simultaneous Electrochemical Detection of Cadmium and Lead Ions. Microchem. J. 2020, 153, 104456. DOI: 10.1016/j.microc.2019.104456.
  • Eder, D. Carbon nanotube-inorganic hybrids. Chem. Rev. 2010, 110, 1348–1385. DOI: 10.1021/cr800433k.
  • Wang, J.; Li, J.; Xu, X.; Zhuoneng, B.; Xu, G.; Shen, H. Promising Photovoltaic Application of Multi-Walled Carbon Nanotubes in Perovskites Solar Cells for Retarding Recombination. RSC Adv. 2016, 6, 42413–42420. DOI: 10.1039/C6RA04743B.
  • Rahmanifar, E.; Yoosefian, M.; Karimi-Maleh, H. Application of La2O3/SWCNTs Nanocomposite Ionic Liquids Carbon Paste Electrode as a Voltammetric Sensor for Determination of Benserazide. Cac. 2016, 13, 46–51. DOI: 10.2174/1573411012666160601145809.
  • Singh, G.; Kapoor, I. P. S.; Dubey, R.; Srivastava, P. Synthesis, Characterization and Catalytic Activity of La2O3 Nanocrystals. Materials Science and Engineering: B 2011, 176, 121–126. DOI: 10.1016/j.mseb.2010.10.009.
  • Kaveh, S.; Nami, N.; Norouzi, B.; Mirabi, A. Biosynthesis of (MWCNTs)-COOH/CdO Hybrid as an Effective Catalyst in the Synthesis of Pyrimidine-Thione Derivatives by Water Lily Flower Extract. Inorganic and Nano-Metal Chemistry 2020, online published. DOI: 10.1080/24701556.2020.1841229.
  • Salehi, B.; Mehrabian, S.; Ahmadi, M. Investigation of Antibacterial Effect of Cadmium Oxide Nanoparticles on Staphylococcus Aureus Bacteria. J. Nanobiotechnology. 2014, 12, 26–34. DOI: 10.1186/s12951-014-0026-8.
  • Savale, A.; Ghotekar, S.; Pansambal, S.; Pardeshi, O. Green Synthesis of Fluorescent La2O3 Nanoparticles Using Leucaena Leucocephala. J. Bacteriol. Mycol. Open Access 2017, 5, 373–376. DOI: 10.15406/jbmoa.2017.05.00148.
  • Heidarzadeh, T.; Nami, N.; Zareyee, D. Preparation of (MWCNTs)-COOH/CeO2 Hybrid as an Efficient Catalyst for Claisen-Schmidt Condensation. Journal of Applied Chemical Research 2021, 15, 44–57.
  • Khan, W.; Sharma, R.; Chaudhury, P. K.; Siddiqui, A. M.; Saini, P. Synthesis of Carboxylic Functionalized Multi Wall Carbon Nanotubes and Their Application for Static Charge Dissipative Fibers. Int. J. Nanomater, Nanotechnol, Nanomed 2016, 2, 025–028. DOI: 10.17352/2455-3492.000011.
  • Hamadanian, M.; Jabbari, V.; Shamshiri, M.; Asad, M.; Mutlay, I. Preparation of Novel Hetero-Nanostructures and High Efficient Visible Light-Active Photocatalyst Using Incorporation of CNT as an Electron-Transfer Channel into the Support TiO2 and PbS. J. Taiwan Inst. Chem. Eng. 2013, 44, 748–757. DOI: 10.1016/j.jtice.2013.01.018.
  • Hwa, K.-Y.; Subramani, B. Synthesis of Zinc Oxide Nanoparticles on Graphene-Carbon Nanotube Hybrid for Glucose Biosensor Applications. Biosens. Bioelectron. 2014, 62, 127–133. DOI: 10.1016/j.bios.2014.06.023.
  • Balamurugan, S.; Balu, A. R.; Usharani, K.; Suganya, M.; Anitha, S.; Prabha, D.; Ilangovan, S. Synthesis of La2O3 Nanopowders by a Simple Soft Chemical Method and Evaluation of Their Antimicrobial Activities. Pac. Sci. Rev. A: Nat. Sci. Eng. 2016, 18, 228–232. DOI: 10.1016/j.psra.2016.10.003.
  • Atieh, M. A.; Bakather, O. Y.; Al-Tawbini, B.; Bukhari, A. A.; Abuilaiwi, F. A.; Fettouhi, M. B. Effect of Carboxylic Functional Group Functionalized on Carbon Nanotubes Surface on the Removal of Lead from Water. Bioinorg. Chem. Appl. 2010, 2010, 1–9./603978. DOI: 10.1155/2010.
  • Arunachalam, T.; Karpagasundaram, M.; Rajarathinam, N. Ultrasound Assisted Green Synthesis of Cerium Oxide Nanoparticles Using Prosopis Juliflora Leaf Extract and Their Structural, Optical and Antibacterial Properties. Materials Science-Poland 2017, 35, 791–798. DOI: 10.1515/msp-2017-0104.
  • Goharshadi, E. K.; Samiee, S.; Nancarrow, P. Fabrication of Cerium Oxide Nanoparticles: Characterization and Optical Properties. J Colloid Interface Sci 2011, 356, 473–480. DOI: 10.1016/j.jcis.2011.01.063.
  • Holcombe, C. E. USAEC Oak Ridge Y-12 Plant, Report Y 1887. 1973.
  • Sørensen, O. T. Thermodynamic Studies of the Phase Relationships of Nonstoichiometric Cerium Oxides at Higher Temperatures. J. Solid State Chem 1976, 18, 217–233. DOI: 10.1016/0022-4596(76)90099-2.
  • Warren, B. E. X-Ray Diffraction. North Chelmsford: Courier Corporation. 1990.
  • Habeeb, A. G.; Praveen Rao, P. N.; Knaus, E. E. Design and Synthesis of Celecoxib and Rofecoxib Analogues as Selective Cyclooxygenase-2 (COX-2) Inhibitors: Replacement of Sulfonamide and Methylsulfonyl Pharmacophores by an Azido Bioisostere. J. Med. Chem. 2001, 44, 3039–3042. DOI: 10.1021/jm010153c.
  • Ahfad-Hosseini, H. R.; Bagheri, H.; Amidi, S. Ionic Liquid-Assisted Synthesis of Celexocib Using Tris-(2-Hydroxyethyl) Ammonium Acetate as an Efficient and Reusable Catalyst. Iran. J. Pharm. Res. 2017, 16, 158–164. DOI: 10.22037/ijpr.2017.2016.
  • Phiwdang, K.; Suphankij, S.; Mekprasart, W.; Pecharapa, W. Synthesis of CuO Nanoparticles by Precipitation Method Using Different Precursors. Energy Procedia 2013, 34, 740–745. DOI: 10.1016/j.egypro.2013.06.808.
  • Rostami, Z.; Rouhanizadeh, M.; Nami, N.; Zareyee, D. Fe3O4 Magnetic Nanoparticles (MNPs) as an Effective Catalyst for Synthesis of Indole Derivatives. Nanochem. Res 2018, 3, 142–148. DOI: 10.22036/ncr.2018.02.003.
  • Nami, N.; Nami, N. Efficient Solvent-Free Synthesis of Amidines Using Nano-Fe3O4 Encapsulated-Sillica Particles Bearing Sulfonic Acid. Journal of Chemical Biological and Physical Sciences. Section B 2015, 5, 1195–1204. http://www.jcbsc.org/test/admin/get_filechem.php?id=309.
  • Heidarzadeh, T.; Nami, N.; Zareyee, D. Synthesis of Indole Derivatives Using Biosynthesized ZnO-CaO Nanoparticles as an Efficient Catalyst. Jnanor. 2021, 66, 61–71. DOI: 10.4028/www.scientific.net/JNanoR.66.61.
  • Nami, N.; Tajbakhsh, M.; Vafakhah, M. Application and Comparison of the Catalytic Activity of Fe3O4 MNPs, Kaolin and Montmorillonite K10 for the Synthesis of Indole Derivatives. Quarterly Journal of Iranian Chemical Communication 2019, 7, 93–101. DOI: 10.30473/icc.2019.4373.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.