158
Views
0
CrossRef citations to date
0
Altmetric
Articles

One pot synthesis of bis (dihydropyrimidinone) and tetrahydro-4H-chromenes derivatives using Ag2O/GO/TiO2 composite nanostructure

, , &
Pages 8-18 | Received 02 Dec 2020, Accepted 11 Jul 2021, Published online: 23 Aug 2021

Reference

  • Garg, B.; Ling, Y.-C. Versatilities of Graphene-Based Catalysts in Organic Transformations. Green Mater. 2013, 1, 47–61. DOI: 10.1680/gmat.12.00008.
  • Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z.; Sheehan, P. E. Reduced Graphene Oxide Molecular Sensors. Nano Lett. 2008, 8, 3137–3140. DOI: 10.1021/nl8013007.
  • Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. Graphene Oxide Doped Polyaniline for Supercapacitors. Electrochem. Commun. 2009, 11, 1158–1161. DOI: 10.1016/j.elecom.2009.03.036.
  • Zhang, L. L.; Zhao, X.; Stoller, M. D.; Zhu, Y.; Ji, H.; Murali, S.; Wu, Y.; Perales, S.; Clevenger, B.; Ruoff, R. S. Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors. Nano Lett. 2012, 12, 1806–1812. DOI: 10.1021/nl203903z.
  • Dhakshinamoorthy, A.; Alvaro, M.; Concepción, P.; Fornés, V.; Garcia, H. Graphene Oxide as an Acid Catalyst for the Room Temperature Ring Opening of Epoxides. Chem. Commun. (Camb) 2012, 48, 5443–5445. DOI: 10.1039/c2cc31385e.
  • Dhopte, K. B.; Raut, D. S.; Patwardhan, A. V.; Nemade, P. R. Graphene Oxide as Recyclable Catalyst for One-Pot Synthesis of α-Aminophosphonates. Synth. Commun. 2015, 45, 778–788. DOI: 10.1080/00397911.2014.989447.
  • Dhopte, K. B.; Zambare, R. S.; Patwardhan, A. V.; Nemade, P. R. Role of Graphene Oxide as a Heterogeneous Acid Catalyst and Benign Oxidant for Synthesis of Benzimidazoles and Benzothiazoles. RSC Adv. 2016, 6, 8164–8172. DOI: 10.1039/C5RA19066E.
  • Islam, S. M.; Roy, A. S.; Dey, R. C.; Paul, S. Graphene Based Material as a Base Catalyst for Solvent Free Aldol Condensation and Knoevenagel Reaction at Room Temperature. J. Mol. Catal. Chem. 2014, 394, 66–73. DOI: 10.1016/j.molcata.2014.06.038.
  • Verma, S.; Mungse, H. P.; Kumar, N.; Choudhary, S.; Jain, S. L.; Sain, B.; Khatri, O. P. Graphene Oxide: An Efficient and Reusable Carbocatalyst for aza-Michael Addition of Amines to Activated Alkenes. Chem. Commun. (Camb) 2011, 47, 12673–12675. DOI: 10.1039/c1cc15230k.
  • Kadam, M. M.; Lokare, O. R.; Kireeti, K. V. M. K.; Gaikar, V. G.; Jha, N. Impact of the Degree of Functionalization of Graphene Oxide on the Electrochemical Charge Storage Property and Metal Ion Adsorption. RSC Adv. 2014, 4, 62737–62745. DOI: 10.1039/C4RA08862J.
  • Krishnamoorthy, K.; Veerapandian, M.; Yun, K.; Kim, S.-J. The Chemical and Structural Analysis of Graphene Oxide with Different Degrees of Oxidation. Carbon 2013, 53, 38–49. DOI: 10.1016/j.carbon.2012.10.013.
  • Yan, H.; Tao, X.; Yang, Z.; Li, K.; Yang, H.; Li, A.; Cheng, R. Effects of the Oxidation Degree of Graphene Oxide on the Adsorption of Methylene Blue. J. Hazard. Mater. 2014, 268, 191–198. DOI: 10.1016/j.jhazmat.2014.01.015.
  • Allaedini, G.; Tasirin, S. M.; Aminayi, P. Synthesis of Fe–Ni–Ce Trimetallic Catalyst Nanoparticles via Impregnation and co-Precipitation and Their Application to Dye Degradation. Chem. Pap. 2016, 70, 231–242.
  • Du, X.; Su, H.; Zhang, X. Metal-Organic Framework-Derived M (M = Fe, Ni, Zn, and Mo) Doped Co9S8 Nanoarrays as Efficient Electrocatalyst for Water Splitting: The Combination of Theoretical Calculation and Experiment. J. Catal. 2020, 383, 103–116. DOI: 10.1016/j.jcat.2020.01.015.
  • Ngcobo, M.; Nyamato, G. S.; Ojwach, S. O. Structural Elucidation of N^O (Ethylimino-Methyl)Phenol Fe(II) and Co(II) Complexes and Their Applications in Ethylene Oligomerization Catalysis. Mol. Catal. 2019, 478, 110590. DOI: 10.1016/j.mcat.2019.110590.
  • Eckenhoff, W. T. Molecular Catalysts of Co, Ni, Fe, and Mo for Hydrogen Generation in Artificial Photosynthetic Systems. Coord. Chem. Rev. 2018, 373, 295–316. DOI: 10.1016/j.ccr.2017.11.002.
  • Adrienn, H.; Zoltán, H.; Ilona, V. Convenient One-Pot Heterogeneous Catalytic Method for the Preparation of 3,4- Dihydropyrimidin-2(1H)-Ones. Synth. Commun. 2006, 36, 129–136.
  • Sanjeev, P.; Gokavi, G. S. Heteropoly Acid Catalyzed Synthesis of 3, 4-Dihydropyrimidin-2 (1H)-Ones. Catal. Commun. 2007, 8, 279–284. DOI: 10.1016/j.catcom.2006.05.048.
  • (a) Nagarathnam, D.; Miao, S. W.; Lagu, B.; Harrell, M. C.; Vyas, K. P.; Gluchowski, C. J. Med. Chem.1999, 42, 4764–4777. (b) Barrow, J. C.; Nantermet, P. G.; Nagarathnam, D.; Forray, C. J. Med. Chem. 2000, 43, 2703–2718.
  • Kappe, C. O. 100 Years of the Biginelli dihydropyrimidine synthesis. Tetrahedron 1993, 49, 6937–6963.
  • Grover, G. J.; Dzwonczyk, S.; McMullen, D. M.; Normandin, D. E.; Parham, C. S.; Sleph, P. G.; Moreland, S. Pharmacologic Profile of the Dihydropyrimidine Calcium Channel Blockers SQ 32,547 and SQ 32,926 [Correction of SQ 32,946]. J. Cardiovasc. Pharmacol. 1995, 26, 289–291. DOI: 10.1097/00005344-199508000-00015.
  • (a) Bose, D. S., Fatima, L., Mereyala, H. B.. Green Chemistry Approaches to the Synthesis of 5-Alkoxycarbonyl-4-aryl-3,4-Dihydropyrimidin-2(1H)-ones by a Three-Component Coupling of One-pot Condensation Reaction: Comparison of Ethanol, Water, and Solvent-Free Conditions. J. Org. Chem. 2003, 68, 587–590; (b) Adib, M., Ghanbary, K., Mostofi, M., Ganjal, M. R. Molecules, 2006, 11, 649; (c) Chari, M. A., Syamasundar, K. J. Mol. Catal. A. 2004, 221, 137. DOI: 10.1021/jo0205199.
  • Dallinger, D.; Gorobets, N. Y.; Kappe, C. O. High-Throughput Synthesis of N3-Acylated Dihydropyrimidines Combining Microwave-Assisted Synthesis and Scavenging Techniques. Org. Lett. 2003, 5, 1205–1208. DOI: 10.1021/ol034085v.
  • (a) Hu, E. H., Sidler, D. R., Dolling, U. H. Unprecedented Catalytic Three Component One-Pot Condensation Reaction: An Efficient Synthesis of 5-Alkoxycarbonyl- 4-aryl-3,4-dihydropyrimidin-2(1H)-ones, J. Org. Chem. 1998, 63, 3454–3457; (b) Dondoni, A., Massi, A. Tetrahedron Lett. 2001, 42, 7975; (c) Peng, J., Deng, Y. Tetrahedron Lett. 2001, 42, 5917. DOI: 10.1021/jo970846u.
  • (a) Yadav, J. S.; Subba Reddy, B. V.; Bhaskar Reddy, K.; Raj, K. S.; Prasad, A. R. Ultrasound-accelerated Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones with Ceric Ammonium Nitrate. J. Chem. Soc., Perkin Trans. 1, 2001, 1, 1939–1941; (b) Saxena, I.; Borah, D. C.; Sarma, J. C. Tetrahedron Lett., 2005, 46, 1159; (c) Bussolari, J. C.; McDonnell, P. A. J Org Chem. 2000, 65, 6777. DOI: 10.1039/b102565c.
  • (a) Kappe, C. O.; Kumar, D.; Varma, R. S. Synthesis. 1999, 1799; (b) Hu, E. H.; Sidler, D. R.; Dolling, U. H. J Org Chem. 1998, 63, 3454.
  • (a) Li, J. T.; Han, J. F.; Yang, J. H.; Li, T. S. Ultrasound Assisted Dehydrogenation of 2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxamides. Ultrason Sonochem, 2011, 18, 119; (b) Memarian, H. R.; Soleymani, M. Ultrason Sonochem. 2011, 18, 745–752. DOI: 10.1016/j.ultsonch.2010.10.006.
  • Alessandro, D.; Alessandro, M. Parallel Synthesis of Dihydropyrimidinones Using Yb(III)-Resin and Polymer-Supported Scavengers under Solvent-Free Conditions. A Green Chemistry Approach to the Biginelli Reaction. Tetrahedron Lett. 2001, 42, 7975.
  • Ranu, B. C.; Hajra, A.; Dey, S. S. A Practical and Green Approach towards Synthesis of Dihydropyrimidinones without Any Solvent or Catalyst. Org. Process Res. Dev. 2002, 6, 817–818. DOI: 10.1021/op0255478.
  • Xu, F.; Huang Lin, D. X.; Wang, Y. Highly Enantioselective Biginelli Reaction Catalyzed by SPINOL-Phosphoric Acids. Org. Biomol. Chem. 2012, 10, 4467– 4470. DOI: 10.1039/c2ob25663k.
  • Mirjalili, B. B. F.; *.; Zamani, L. Nano-Ticl4.SiO2: A Versatile and Efficient Catalyst for Synthesis of Dihydropyrimidones via Biginelli Condensation. S. Afr. J. Chem. 2014, 67, 21–26.
  • Girija, D.; Bhojya Naik, H. S.; Vinay Kumar, B.; Sudhamani, C. N.; Harish, K. N. Fe3O4 Nanoparticle Supported Ni (II) Complexes: A Magnetically Recoverable Catalyst for Biginelli Reaction. Arabian J. Chem. 2019, 12, 420–428. DOI: 10.1016/j.arabjc.2014.08.008.
  • Lima, C. G. S.; Silva, S.; Gonçalves, R. H.; Leite, E. R.; Schwab, R. S.; Corrêa, A. G.; Paixão, M. W. Highly Efficient and Magnetically Recoverable Niobium Nanocatalyst for the Multicomponent Biginelli Reaction. ChemCatChem. 2014, 6, 3455– 3463. DOI: 10.1002/cctc.201402689.
  • Safari, J.; *.; Zarnegar, Z. Biginelli Reaction on Fe3O4-MWCNT Nanocomposite: excellent Reactivity and Facile Recyclability of the Catalyst Combined with Ultrasound Irradiation. RSC Adv. 2013, 3, 17962–17967. DOI: 10.1039/c3ra43014f.
  • Mahato, B. N.; Krithiga, T. Mesoporous ZnO/AlSBA-15 Nanocomposite as an Efficient Catalyst for Synthesis of 3,4-Dihydropyrimidin-2(1H)-One via Biginelli Reaction and Their Biological Activity Study. Bull. Chem. React. Eng. Catal. 2019, 14, 634–645. DOI: 10.9767/bcrec.14.3.4469.634-645.
  • Zaheri, H. M.; Javanshir, S.; Hemmati, B.; Dolatkhah, Z.; Fardpour, M. Magnetic Core-shell Carrageenan moss/Fe3O4: A Polysaccharide-based Metallic Nanoparticles for Synthesis of Pyrimidinone Derivatives via Biginelli Reaction . Chem. Cent. J. 2018, 12, 108. DOI: 10.1186/s13065-018-0477-3.
  • Bashti, A.; Kiasat, A. R. Biginelli Multicomponent Condensation Reaction Promoted by 4,4′-Bipyridinium Dichloride Ordered Mesoporous Silica Nanocomposite under Solvent Free Conditions. Org. Chem. Res. 2016, 2, 28–38.
  • Maleki, A.; Niksefat, M.; Rahimi, J.; Hajizadeh, Z. Design and Preparation of Fe3O4@ PVA Polymeric Magnetic Nanocomposite Film and Surface Coating by Sulfonic Acid via in Situ Methods and Evaluation of Its Catalytic Performance in the Synthesis of Dihydropyrimidines. BMC Chem. 2019, 13, 19. DOI: 10.1186/s13065-019-0538-2.
  • Zarnegar, Z.; Safari, J. Magnetic Nanoparticles Supported Imidazolium-Based Ionic Liquids as Nanocatalyst in Microwave-Mediated Solvent-Free Biginelli Reaction. J. Nanopart. Res. 2014, 16, 2509. DOI: 10.1007/s11051-014-2509-9.
  • Dangolani, S. k.; Panahi,F.; Nourisefat, M.; Khalafi-Nezhad, A. 4-Dialkylaminopyridine Modified Magnetic Nanoparticles: As an Efficient Nano-Organocatalyst for One-Pot Synthesis of 2-Amino-4H-Chromene-3-Carbonitrile Derivatives in Water. RSC Adv. 2016, 6, )92316–92324. DOI: 10.1039/C6RA18078G.
  • Maleki, A.; Azadegan, s. Preparation and Characterization of Silica-Supported Magnetic Nanocatalyst and Application in the Synthesis of 2-Amino-4H-Chromene-3-Carbonitrile Derivatives. Inorg. Nano Metal Chem. 2017, 47, 917–924. DOI: 10.1080/24701556.2016.1241266.
  • Amirheidari, B.; Seifi, M.; Abaszadeh, M. Evaluation of Magnetically Recyclable nano-Fe3O4 as a Green Catalyst for the Synthesis of Mono- and Bistetrahydro-4H-Chromene and Mono and bis1,4-Dihydropyridine Derivatives. Res. Chem. Intermed. 2016, 42, 3413–3423. DOI: 10.1007/s11164-015-2220-1.
  • Mollashahi, E.; Nikraftar, M. Nano-SiO2 Catalyzed Three-Component Preparations of Pyrano[2,3-d]Pyrimidines, 4H-Chromenes, and Dihydropyrano[3,2-c]Chromenes. J. Saudi Chem. Soc. 2018, 22, 42–48. DOI: 10.1016/j.jscs.2017.06.003.
  • Mohammadzadeh, A.; Marjani, A. P.; Zamani, A. A Novel Biopolymer-Based Nanomagnetic Catalyst for the Synthesis of 4H-Pyran and Tetrahydro-4H-Chromene Derivatives. S. Afr. J. Chem. 2020, 73, 55–63.
  • Molaei, H. R.; Sadeghi, B. Microwave Assisted Multi-Component Synthesis of 4H-Chromene Derivatives by Nano-Coconut Shell-BF3 as a New Heterogeneous Catalyst. J. Appl. Chem. Res. 2019, 13, 85–96.
  • Vessally, E.; Hassanpour, A.; Hosseinzadeh-Khanmiri, R.; Babazadeh, M.; Abolhasani, J. Green and Recyclable Sulfonated Graphene and Graphene Oxide Nanosheet Catalysts for the Syntheses of 3,4-Dihydropyrimidinones. Monatsh. Chem. 2017, 148, 321–326. volume DOI: 10.1007/s00706-016-1762-2.
  • Moitra, D.; Ghosh, B. K.; Chandel, M.; Ghosh, N. N. Synthesis of a BiFeO3 Nanowire-Reduced Graphene Oxide Based Magnetically Separable Nanocatalyst and Its Versatile Catalytic Activity towards Multiple Organic Reactions. RSC Adv. 2016, 6, 97941–98553. DOI: 10.1039/C6RA22077K.
  • Narayanan, D. P.; Gopalakrishnan, A.; Yaakob, Z.; Sugunan, S.; Narayanan, B. N. A Facile Synthesis of Clay – Graphene Oxide Nanocomposite Catalysts for Solvent Free Multicomponent Biginelli Reaction. Arabian J. Chem. 2020, 13, 318–334. DOI: 10.1016/j.arabjc.2017.04.011.
  • Achary, L. S. K.; Kumar, A.; Rout, L.; Kunapuli, S. V. S.; Dhaka, R. S.; Dash, P. Phosphate Functionalized Graphene Oxide with Enhanced Catalytic Activity for Biginelli Type Reaction under Microwave Condition. Chem. Eng. J. 2018, 331, 300–310. DOI: 10.1016/j.cej.2017.08.109.
  • Rostamizadeh, S.; Hemmasi, A.; Zekri, N. Magnetic Amine-Functionalized Graphene Oxide as a Novel and Recyclable Bifunctional Nanocatalyst for Solvent-Free Synthesis of Pyrano[3,2-c]Pyridine Derivatives. Nanochem. Res. 2017, 2, 29–41.
  • Khosravi, K.; Khalaji, K.; Naserifar, S. Solvent‐ and Metal‐Free Oxidative Esterification of Aromatic Aldehydes Using Urea‐2,2‐Dihydroperoxypropane as a New Solid Oxidant. J. Chin. Chem. Soc. 2017, 64, 303–309. DOI: 10.1002/jccs.201600777.
  • Moosavi-Zare, A. R.; Zolfigol, M. A.; Khaledian, O.; Khakyzadeh, V.; Farahani, M. D.; Beyzavi, M. H.; Kruger, H. G. Tandem Knoevenagel–Michael–Cyclocondensation Reaction of Malononitrile, Various Aldehydes and 2-Naphthol over Acetic Acid Functionalized Ionic Liquid. Chem. Eng. J. 2014, 248, 122–127. DOI: 10.1016/j.cej.2014.03.035.
  • Nyankson, E.; Adjasoo, J.; Kwame Efavi, J.; Yaya, A.; Manu, G.; Kingsford, A.; Yeboah Abrokwah, R. Synthesis and Kinetic Adsorption Characteristics of Zeolite/CeO2 Nanocomposite. Scient. Afr. 2020, 7, e00257. DOI: 10.1016/j.sciaf.2019.e00257.
  • Mohammadi, M. K.; Gutiérrez, A.; Hayati, P.; Mohammadi, K.; Rezaei, R. Diverse Structural Assemblies and Influence in the Morphology of Different Parameters in a Series of 0D and 1D Mercury(II) Metal-Organic Coordination Complexes by the Sonochemical Process. Polyhedron 2019, 160, 20–34. DOI: 10.1016/j.poly.2018.12.016.
  • Mohammadi, M. K. Solvent-Free Synthesis of Oxovanadium (V) complexes with Isatin Base Schiff Ligands. Inorg. Nano-Metal Chem. 2017, 47, 1323–1327. VOL. NO. DOI: 10.1080/24701556.2017.1284096.
  • Xiao, L.; Youji, L.; Feitai, C.; Peng, X.; Ming, L. Facile Synthesis of Mesoporous Titanium Dioxide Doped by Ag-Coated Graphene with Enhanced Visible-Light Photocatalytic Performance for Methylene Blue Degradation. RSC Adv. 2017, 7, 25314–25324. DOI: 10.1039/C7RA02198D.
  • Kumar, D.; Reddy, V. B.; Sharad, S.; Dube, U.; Kapur, S. A Facile One-pot Green Synthesis and Antibacterial Activity of 2-Amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-Chromenes . Eur. J. Med. Chem. 2009, 44, 3805–3809. DOI: 10.1016/j.ejmech.2009.04.017.
  • Taheri Hatkehlouei, S. F.; Mirza, B.; Soleimani- Amiri, S. Solvent-Free One-Pot Synthesis of Diverse Dihydropyrimidinones/Tetrahydropyrimidinones Using Biginelli Reaction Catalyzed by Fe3O4@C@OSO3H. Polycycl. Arom. Compd. 2020, DOI: 10.1080/10406638.2020.1781203.
  • Sayyahi, S.; Behvandi, M. Highly Efficient Multicomponent Biginelli’s Synthesis of 3,4-dihydropyrimidin2(1H)-Ones Catalyzed by Al-MCM-41 under Solvent-Free Conditions. Iran J. Catal. 2015, 5, 119–122.
  • Zhang, Y.; Wang, B.; Zhang, X.; Huang, J.; Liu, C. An Efficient Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones and Thiones Catalyzed by a Novel Brønsted Acidic Ionic Liquid under Solvent-Free Conditions. Molecules 2015, 20, 3811–3820. DOI: 10.3390/molecules20033811.
  • Javanshir, S.; Safari, M.; Dekamin, M. G. A Facile and Green Three-Component Synthesis of2-Amino-3-Cyano-7-Hydroxy-4H-Chromenes on Grinding. Sci. Iran. 2014, 21, 742–747.
  • Kumar, A.; Rao, M. S. An Expeditious and Greener One-Pot Synthesis of 4Hchromenes Catalyzed by Ba(OTf)2 in PEG-Water. Green Chem. Lett. Rev. 2012, 5, 283–290. DOI: 10.1080/17518253.2011.623683.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.