164
Views
0
CrossRef citations to date
0
Altmetric
Articles

A facile hydrothermal reduction synthesis of multilayer flake Ag/Ni(OH)2 nanostructures and their electrocatalytic activity toward the oxidation of glucose

, , , &
Pages 1441-1448 | Received 24 Feb 2021, Accepted 11 Jul 2021, Published online: 16 Aug 2021

References

  • Wang, J. Electrochemical Glucose Biosensors. Chem. Rev. 2008, 108, 814–825. DOI: 10.1021/cr068123a.
  • Guilbault, G. G.; Lubrano, G. J. An Enzyme Electrode for the Amperometric Determination of Glucose. Anal. Chim. Acta. 1973, 64, 439–455. DOI: 10.1016/S0003-2670(01)82476-4.
  • Wang, X. L.; Liu, E. L.; Zhang, X. L. Non-Enzymatic Glucose Biosensor Based on Copper Oxide-Reduced Graphene Oxide Nanocomposites Synthesized from Water Isopropanol Solution. Electrochim. Acta 2014, 130, 253–260. DOI: 10.1016/j.electacta.2014.03.030.
  • Li, M.; Bo, X.; Zhang, Y.; Han, C.; Guo, L. One-Pot Ionic Liquid-Assisted Synthesis of Highly Dispersed Pt/Pd Nanoparticles/Reduced Graphene Oxide Composites for Non-Enzymatic Glucose Detection. Biosens. Bioelectron. 2014, 56, 223–230. DOI: 10.1016/j.bios.2014.01.030.
  • Yang, X.; Wang, Y.; Liu, Y.; Jiang, X. A Sensitive Hydrogen Peroxide and Glucose Biosensor Based on Gold/Silver Core-Shell Nanorods. Electrochim. Acta 2013, 108, 39–44. DOI: 10.1016/j.electacta.2013.06.017.
  • Zhang, L.; Yuan, S. M.; Lu, X. J. Amperometric Nonenzymatic Glucose Sensor Based on a Glassy Carbon Electrode Modified with a Nanocomposite Made from Nickel(II) Hydroxide Nanoplates and Carbon Nanofibers. Microchim. Acta 2014, 181, 365–372. DOI: 10.1007/s00604-013-1123-3.
  • Li, Y. H.; Li, J. Y.; Xu, Y. J. Bimetallic Nanoparticles as Cocatalysts for Versatile. EnergyChem 2021, 3, 100047. DOI: 10.1016/j.enchem.2020.100047.
  • Li, Y. J.; Zhou, L.; Guo, S. J. Noble Metal-Free Electrocatalytic Materials for Water Splitting in Alkaline Electrolyte. EnergyChem 2021, 3, 100053. DOI: 10.1016/j.enchem.2021.100053.
  • Jena, B. K.; Raj, C. R. Enzyme-Free Amperometric Sensing of Glucose by Using Gold Nanoparticles. Chem. Eur. J. 2006, 10, 2702–2708.
  • Luo, Y.; Guo, X.; Yuan, M.; Yan, Y.; Chen, C.; Pang, H. γ-MnOOH Nanowires Hydrothermally Reduced by Leaves for HighEfficiency Electrocatalysis of the Glucose Oxidation Reaction. ACS Sustain. Chem. Eng. 2019, 7, 8972–8978. DOI: 10.1021/acssuschemeng.9b01106.
  • Wang, Z. Y.; Dai, Z. H. Carbon Nanomaterial-Based Electrochemical Biosensors: An Overview. Nanoscale 2015, 7, 6420–6431. DOI: 10.1039/c5nr00585j.
  • Yuan, G.; Yu, S.; Jie, J.; Wang, C.; Li, Q.; Pang, H. Cu/Cu2O Nanostructures Derived from Copper Oxalate as High Performance Electrocatalyst for Glucose Oxidation. Chin. Chem. Lett. 2020, 31, 1941–1945. DOI: 10.1016/j.cclet.2019.12.034.
  • Safavi, A.; Maleki, N.; Farjami, E. Fabrication of a Glucose Sensor Based on a Novel Nanocomposite Electrode. Biosens. Bioelectron. 2009, 24, 1655–1660. DOI: 10.1016/j.bios.2008.08.040.
  • Habrioux, A.; Sibert, E.; Servat, K.; Vogel, W.; Kokoh, K. B.; Alonso-Vante, N. Activity of Platinum-Gold Alloys for Glucose Electrooxidation in Biofuel Cells. J. Phys. Chem. B. 2007, 111, 10329–10333. DOI: 10.1021/jp0720183.
  • Huang, H. Y.; Chen, P. Y. PdNi- and Pd-coated electrodes prepared by electrodeposition from ionic liquid for nonenzymatic electrochemical determination of ethanol and glucose in alkaline media. Talanta 2010, 83, 379–385. DOI: 10.1016/j.talanta.2010.09.032.
  • Bai, Y.; Sun, Y.; Sun, C. Pt-Pb Nanowire Array Electrode for Enzyme-Free Glucose Detection. Biosens. Bioelectron. 2008, 24, 579–585. DOI: 10.1016/j.bios.2008.06.003.
  • Xiao, F.; Zhao, F.; Mei, D.; Mo, Z.; Zeng, B. Nonenzymatic Glucose Sensor Based on ultrasonic-electrodeposition of bimetallic PtM (M = Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film. Biosens. Bioelectron. 2009, 24, 3481–3486. DOI: 10.1016/j.bios.2009.04.045.
  • Mu, Y.; Jia, D.; He, Y.; et al. Nano Nickel Oxide Modified Non-Enzymatic Glucose Sensors with Enhanced Sensitivity through an Electrochemical Process Strategy at High Potential. Biosens. Bioelectron 2011, 6, 2948–2952.
  • Meher, S. K.; Rao, G. R. Archetypal Sandwich-Structured CuO for High Performance Non-Enzymatic Sensing of Glucose. Nanoscale 2013, 5, 2089–2099. DOI: 10.1039/c2nr33264g.
  • Zhang, E.; Xie, Y.; Ci, S.; Jia, J.; Wen, Z. Porous Co3O4 Hollow Nanododecahedra for Nonenzymatic Glucose Biosensor and Biofuel Cell. Biosens. Bioelectron. 2016, 81, 46–53. DOI: 10.1016/j.bios.2016.02.027.
  • Guo, M-m.; Yin, X-l.; Zhou, C-h.; Xia, Y.; Huang, W.; Li, Z. Ultrasensitive Nonenzymatic Sensing of Glucose on Ni(OH)2-Coated Nanoporous Gold Film with Two Pairs of Electron Mediators. Electrochim. Acta 2014, 142, 351–358. DOI: 10.1016/j.electacta.2014.07.135.
  • Gourrier, L.; Deabate, S.; Michel, T.; Paillet, M.; Hermet, P.; Bantignies, J.-L.; Henn, F. Characterization of Unusually Large “Pseudo-Single Crystal” of β-Nickel Hydroxide. J. Phys. Chem. C. 2011, 115, 15067–15074. DOI: 10.1021/jp203222t.
  • Lee, J. W.; Ahn, T.; Soundararajan, D.; Ko, J. M.; Kim, J.-D. Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior. Chem. Commun. (Camb). 2011, 47, 6305–6307. DOI: 10.1039/c1cc11566a.
  • Li, G.; Wang, X.; Liu, L.; Liu, R.; Shen, F.; Cui, Z.; Chen, W.; Zhang, T. Controllable Synthesis of 3D Ni(OH)2 and NiO Nanowalls on Various Substrates for High-Performance Nanosensors. Small 2015, 11, 731–739. DOI: 10.1002/smll.201400830.
  • Prathap, M. U. A.; Satpati, B.; Srivastava, R. Facile Preparation of β-Ni(OH)2-NiCo2O4 Hybrid Nanostructure and Its Application in the Electro-Catalytic Oxidation of Methanol. Electrochim. Acta 2014, 130, 368–380. DOI: 10.1016/j.electacta.2014.03.043.
  • Yoon, T.; Kim, K. S. One-Step Synthesis of CoS-Doped β-Co(OH)2@Amorphous MoS2+x Hybrid Catalyst Grown on Nickel Foam for High-Performance Electrochemical Overall Water Splitting. Adv. Funct. Mater. 2016, 41, 7386–7393.
  • Yuksel, R.; Coskun, S.; Kalay, Y. E.; Unalan, H. E. Silver Nanowire Network Nickel Hydroxide Core-Shell Electrodes for Supercapacitors. J. Power Sourc. 2016, 328, 167–173. DOI: 10.1016/j.jpowsour.2016.08.008.
  • Du, H.; Pan, Y.; Zhang, X.; Cao, F.; Wan, T.; Du, H.; Joshi, R.; Chu, D. Silver Nanowire/Nickel Hydroxide Nanosheet Composite for a Transparent Electrode and All-Solid-State Supercapacitor. Nanosc. Adv. 2019, 1, 140–146. DOI: 10.1039/C8NA00110C.
  • Lv, S.; Chu, X.; Yang, F.; Wang, H.; Yang, J.; Chi, Y.; Yang, X. Hierarchical Core/Shell Structured Ag@Ni(OH)2 Nanospheres as Binder-Free Electrodes for High Performance Supercapacitors. Crystals 2019, 9, 118–126. DOI: 10.3390/cryst9020118.
  • Zhang, Z. T.; Zhao, B.; Hu, L. M. PVP Protective Mechanism of Ultrafine Silver Powder Synthesized by Chemical Reduction Processes. J. Solid State Chem. 1996, 1, 105–110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.