231
Views
4
CrossRef citations to date
0
Altmetric
Articles

Mechanisms of green synthesis of iron nanoparticles using Trifolium alexandrinum extract and degradation of methylene blue

& ORCID Icon
Pages 23-32 | Received 07 Sep 2020, Accepted 29 Aug 2021, Published online: 14 Sep 2021

References

  • Tang, S. K.; Teng, T. T.; Alkarkhi, A. F. M.; Li, Z. Sonocatalytic Degradation of Rhodamine B in Aqueous Solution in the Presence of TiO2 Coated Activated Carbon. APCBEE Proc. 2012, 3, 110–115. DOI: 10.7763/IJESD.2012.V3.188.
  • Carmen, Z.; Daniela, S. Textile Organic Dyes—Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents—A Critical Overview. In: Organic Pollutants Ten Years after the Stockholm Convention - Environmental and Analytical Update. InTech Open: London, 2012, 55–86. DOI: 10.5772/32373.
  • Shahwan, T.; Abu Sirriah, S.; Nairat, M.; Boyacı, E.; Eroğlu, A. E.; Scott, T. B.; Hallam, K. R. Green Synthesis of Iron Nanoparticles and Their Application as a Fenton-like Catalyst for the Degradation of Aqueous Cationic and Anionic Dyes. Chem. Eng. J. 2011, 172, 258–266. DOI: 10.1016/j.cej.2011.05.103.
  • Akarslan, F.; Demiralay, H. Effects of Textile Materials Harmful to Human Health. Acta Phys. Pol. A. 2015, 128, B-407–408. DOI: 10.12693/APhysPolA.128.B-407.
  • Hashemian, S.; Salari, K.; Salehifar, H.; Yazdi, Z. A. Removal of Azo Dyes (Violet B and Violet 5R) from Aqueous Solution Using New Activated Carbon Developed from Orange Peel. J. Chem. 2013, 2013, 1–10. DOI: 10.1155/2013/283274.
  • Fradj, A. B.; Hamouda, S. B.; Ouni, H.; Lafi, R.; Gzara, L.; Hafiane, A. Removal of Methylene Blue from Aqueous Solutions by Poly (Acrylic Acid) and Poly (Ammonium Acrylate) Assisted Ultrafiltration. Sep. Purif. Technol. 2014, 133, 76–81. DOI: 10.1016/j.seppur.2014.06.038.
  • Eslami, H.; Khavidak, S. S.; Salehi, F.; Khosravi, R.; Fallahzadeh, R. A.; Peirovi, R.; Sadeghi, S. Biodegradation of Methylene Blue from Aqueous Solution by Bacteria Isolated from Contaminated Soil. J. Adv. Environ. Health Res. 2017, 5, 10–15. DOI: 10.22102/JAEHR.2017.46690.
  • Wang, Q.; Zhang, D.; Tian, S.; Ning, P. Simultaneous Adsorptive Removal of Methylene Blue and Copper Ions from Aqueous Solution by Ferrocene-Modified Cation Exchange Resin. J. Appl. Polym. Sci. 2014, 131, 1–9. DOI: 10.1002/app.41029.
  • Lau, Y.-Y.; Wong, Y.-S.; Teng, T.-T.; Morad, N.; Rafatullah, M.; Ong, S.-A. Degradation of Cationic and Anionic Dyes in Coagulation–Flocculation Process Using bi-Functionalized Silica Hybrid with Aluminum-Ferric as Auxiliary Agent. RSC Adv. 2015, 5, 34206–34215. DOI: 10.1039/C5RA01346A.
  • Soltani, N.; Saion, E.; Hussein, M. Z.; Erfani, M.; Abedini, A.; Bahmanrokh, G.; Navasery, M.; Vaziri, P. Visible Light-Induced Degradation of Methylene Blue in the Presence of Photocatalytic ZnS and CdS Nanoparticles. Int. J. Mol. Sci. 2012, 13, 12242–12258. DOI: 10.3390/ijms131012242.
  • Dutta, K.; Mukhopadhyay, S.; Bhattacharjee, S.; Chaudhuri, B. Chemical Oxidation of Methylene Blue Using a Fenton-like Reaction. J. Hazard. Mater. 2001, 84, 57–71. DOI: 10.1016/s0304-3894(01)00202-3.
  • Masoumbeigi, H.; Rezaee, A. Removal of Methylene Blue (MB) Dye from Synthetic Wastewater Using UV/H2O2 Advanced Oxidation Process. J. Health Polic. Sustain. Health 2015, 2, 160–166.
  • Ryu, H.-J.; Kim, H.-L.; Joo, J. H.; Lee, J.-S. Structurally and Compositionally Tunable Absorption Properties of AgCl@AgAu Nanocatalysts for Plasmonic Photocatalytic Degradation of Environmental Pollutants. Catalysts 2020, 10, 405–418. DOI: 10.3390/catal10040405.
  • Panimalar, S.; Uthrakumar, R.; Selvi, E. T.; Gomathy, P.; Inmozhi, C.; Kaviyarasu, K.; Kennedy, J. Studies of MnO2/g-C3N4 Hetrostructure Efficient of Visible Light Photocatalyst for Pollutants Degradation by Sol-Gel Technique. Surf. Interfaces 2020, 20, 100512–100520. DOI: 10.1016/j.surfin.2020.100512.
  • Butt, K. M.; Farrukh, M. A.; Muneer, I. Influence of Lanthanum Doping via Hydrothermal and Reflux Methods on the SnO2–TiO2 Nanoparticles Prepared by Sol–Gel Method and Their Catalytic Properties. J. Mater. Sci: Mater. Electron. 2016, 27, 8493–8498. DOI: 10.1007/s10854-016-4864-z.
  • Herlekar, M.; Barve, S.; Kumar, R. Plant-Mediated Green Synthesis of Iron Nanoparticles. J. Nanopart. 2014, 2014, 1–9. DOI: 10.1155/2014/140614.
  • Iravani, S. Green Synthesis of Metal Nanoparticles Using Plants. Green Chem. 2011, 13, 2638–2650. DOI: 10.1039/c1gc15386b.
  • Huang, L.; Weng, X.; Chen, Z.; Megharaj, M.; Naidu, R. Synthesis of Iron-Based Nanoparticles Using Oolong Tea Extract for the Degradation of Malachite Green. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2014, 117, 801–804. DOI: 10.1016/j.saa.2013.09.054.
  • Eslami, S.; Ebrahimzadeh, M. A.; Biparva, P. Green Synthesis of Safe Zero Valent Iron Nanoparticles by Myrtus Communis Leaf Extract as an Effective Agent for Reducing Excessive Iron in Iron-Overloaded Mice, a Thalassemia Model. RSC Adv. 2018, 8, 26144–26155. DOI: 10.1039/C8RA04451A.
  • Kolodziejczyk-Czepas, J.; Nowak, P.; Kowalska, I.; Stochmal, A. Antioxidant Action of Six Trifolium Species in Blood Platelet Experimental System In Vitro. Mol. Cell. Biochem. 2015, 410, 229–237. DOI: 10.1007/s11010-015-2556-2.
  • Mohamed, K. M.; Hassanean, H. A.; Ohtani, K.; Kasai, R.; Yamasaki, K. Chalcanol Glucosides from Seeds of Trifolium Alexandrinum. Phytochemistry 2000, 53, 401–404. DOI: 10.1016/S0031-9422(99)00547-6.
  • Shah, A. S.; Ahmed, M.; Alkreathy, H. M.; Khan, M. R.; Khan, R. A.; Khan, S. Phytochemical Screening and Protective Effects of Trifolium Alexandrinum (L.) against Free Radical-Induced Stress in Rats. Food Sci. Nutr. 2014, 2, 751–757. DOI: 10.1002/fsn3.152.
  • Khan, A. V.; Ahmed, Q. U.; Shukla, I.; Khan, A. A. Antibacterial Activity of Leaves Extracts of Trifolium Alexandrinum Linn. against Pathogenic Bacteria Causing Tropical Diseases. Asian Pac. J. Trop. Biomed. 2012, 2, 189–194. DOI: 10.1016/S2221-1691(12)60040-9.
  • Ali, R. A. H. Phytochemical and Biological Studies of Iris pseudacorous L. and Trifolium alexandrinum L. cultivated in Egypt. PhD thesis, Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Egypt, 2016.
  • Jovanovic, I. N.; Milicevic, A. A New, Simplified Model for the Estimation of Polyphenol Oxidation Potentials Based on the Number of OH Groups. Arh. Hig. Rada. Toksikol. 2017, 68, 93–98. DOI: 10.1515/aiht-2017-68-2988.
  • Simic, A.; Manojlovic, D.; Segan, D.; Todorovic, M. Electrochemical Behavior and Antioxidant and Prooxidant Activity of Natural Phenolics. Molecules 2007, 12, 2327–2340. DOI: 10.3390/12102327.
  • Riahi, S.; Moghaddam, A. B.; Ganjali, M. R.; Norouzi, P. Determination of the Oxidation Potentials of Pyrogallol and Some of Its Derivatives: theory and Experiment. J. Theor. Comput. Chem. 2007, 06, 331–340. DOI: 10.1142/S0219633607003015.
  • Grellier, P.; Nemeikaite-Ceniene, A.; Sarlauskas, J.; Cenas, N. Role of Single-Electron Oxidation Potential and Lipophilicity in the Antiplasmodial in Vitro Activity of Polyphenols: Comparison to Mammalian Cells. Z. Naturforsch. C. J. Biosci. 2008 May-Jun, 63, 445–450. DOI: 10.1515/znc-2008-5-622.
  • Naseem, T.; Farrukh, M. A. Antibacterial Activity of Green Synthesis of Iron Nanoparticles Using Lawsonia Inermis and Gardenia Jasminoides Leaves Extract. J. Chem. 2015, 2015, 1–7. DOI: 10.1155/2015/912342.
  • Pattanayak, M.; Nayak, P. L. Green Synthesis and Characterization of Zero Valent Iron Nanoparticles from the Leaf Extract of Azadirachta Indica (Neem). World J. Nanosci. Technol. 2013, 2, 6–9. DOI: 10.5829/idosi.wjnst.2013.2.1.21132.
  • Singhal, R. K.; Gangadhar, B.; Basu, H.; Manisha, V.; Naidu, G. R. K.; Reddy, A. V. R. Remediation of Malathion Contaminated Soil Using Zero Valent Iron Nano-Particles. AJAC 2012, 03, 76–82. DOI: 10.4236/ajac.2012.31011.
  • Ebrahiminezhad, A.; Zare-Hoseinabadi, A.; Berenjian, A.; Ghasemi, Y. Green Synthesis and Characterization of Zerovalent Iron Nanoparticles Using Stinging Nettle (Urtica Dioica) Leaf Extract. Green Process. Synth. 2017, 6, 1–7. DOI: 10.1515/gps.2016-0133.
  • He, Y.; Wei, F.; Ma, Z.; Zhang, H.; Yang, Q.; Yao, B.; Huang, Z.; Li, J.; Zeng, C.; Zhang, Q. Green Synthesis of Silver Nanoparticles Using Seed Extract of Alpinia Katsumadai, and Their Antioxidant, Cytotoxicity, and Antibacterial Activities. RSC Adv. 2017, 7, 39842–39851. DOI: 10.1039/C7RA05286C.
  • Prasad, C.; Gangadhara, S.; Venkateswarlu, P. Bio-Inspired Green Synthesis of Fe3O4 Magnetic Nanoparticles Using Watermelon Rinds and Their Catalytic Activity. Appl. Nanosci. 2016, 6, 797–802. DOI: 10.1007/s13204-015-0485-8.
  • Oliveira, R. N.; Mancini, M. C.; Oliveira, F. C. S. D.; Passos, T. M.; Quilty, B.; Thire, R. M. D. S. M.; McGuinness, G. B. FTIR Analysis and Quantification of Phenols and Flavonoids of Five Commercially Available Plants Extracts Used in Wound Healing. Rev. Mater. 2016, 21, 767–779. DOI: 10.1590/s1517-707620160003.0072.
  • Yufanyi, D. M.; Ondoh, A. M.; Foba-Tendo, J.; Mbadcam, K. J. Effect of Decomposition Temperature on the Crystallinity of α-Fe2O3 (Hematite) Obtained from an Iron (III)-Hexamethylenetetramine Precursor. Am. J. Chem. 2015, 5, 1–9.
  • Lin, J.; Weng, X.; Jin, X.; Megharaj, M.; Naidu, R.; Chen, Z. Reactivity of Iron- Based Nanoparticles by Green Synthesis under 3 Various Atmospheres and Their Removal Mechanism of Methylene Blue. RSC Adv. 2015, 5, 70874–70882. DOI: 10.1039/C5RA10629J.
  • Nethaji, S.; Sivasamy, A.; Mandal, A. B. Adsorption Isotherms, Kinetics and Mechanism for the Adsorption of Cationic and Anionic Dyes onto Carbonaceous Particles Prepared from Juglans regia Shell Biomass. Int. J. Environ. Sci. Technol. 2013, 10, 231–242. DOI: 10.1007/s13762-012-0112-0.
  • Liu, Y.; Shen, X. Synthesis and Application of Surface-Modified NiFe Nanoparticles as a New Magnetic Nano Adsorbent for the Removal of Nickel Ions from Aqueous Solution. Water Sci. Technol. 2017, 76, 2851–2857. DOI: 10.2166/wst.2017.453.
  • Gupta, N.; Singh, H. P.; Sharma, R. K. Metal Nanoparticles with High Catalytic Activity in Degradation of Methyl Orange: An Electron Relay Effect. J. Mol. Catal. A. Chem. 2011, 335, 248–252. DOI: 10.1016/j.molcata.2010.12.001.
  • Edison, T. N. J. I.; Sethuraman, M. G. Instant Green Synthesis of Silver Nanoparticles Using Terminalia Chebula Fruit Extract and Evaluation of Their Catalytic Activity on Reduction of Methylene Blue. Process Biochem. 2012, 47, 1351–1357. DOI: 10.1016/j.procbio.2012.04.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.