470
Views
0
CrossRef citations to date
0
Altmetric
Articles

Preparation of thymol incorporated organic-inorganic hybrid nanoflowers as a novel fenton agent with intrinsic catalytic and antimicrobial activities

Pages 322-327 | Received 03 Mar 2021, Accepted 29 Aug 2021, Published online: 21 Sep 2021

References

  • Alswat, A. A.; Bin Ahmad, M.; Saleh, T. A. Preparation and Characterization of Zeolite\Zinc Oxide-Copper Oxide Nanocomposite: Antibacterial Activities. Colloids Interface Sci. Commun. 2017, 16, 19–24. DOI: 10.1016/j.colcom.2016.12.003.
  • Alswat, A. A.; Bin Ahmad, M.; Saleh, T. A.; Bin Hussein, M. Z.; Ibrahim, N. A. Effect of Zinc Oxide Amounts on the Properties and Antibacterial Activities of Zeolite/Zinc Oxide Nanocomposite. Mater. Sci. Eng. C. Mater. Biol. Appl. 2016, 68, 505–511. DOI: 10.1016/j.msec.2016.06.028.
  • Alswat, A. A.; Bin Ahmad, M.; Hussein, M. Z.; Ibrahim, N. A.; Saleh, T. A. Copper Oxide Nanoparticles-Loaded Zeolite and Its Characteristics and Antibacterial Activities. J. Mater. Sci. Technol. 2017, 33, 889–896. DOI: 10.1016/j.jmst.2017.03.015.
  • Kot, B.; Ahmed, A. A.; Saleh, T. A.; Ajeebi, A. M.; Al-Gharsan, M. S.; Aldahmash, N. F. Pseudobactins Bounded Iron Nanoparticles for Control of an Antibiotic-Resistant Pseudomonas aeruginosa ryn32. Biotechnol. Prog. 2020, 36, e2907. DOI: 10.1002/btpr.2907.
  • Tran, T. C.; Kim, M. I. Organic-Inorganic Hybrid Nanoflowers as Potent Materials for Biosensing and Biocatalytic Applications. BioChip J. 2018, 12, 268–279. DOI: 10.1007/s13206-018-2409-7.
  • Ocsoy, I.; Dogru, E.; Usta, S. A New Generation of Flowerlike Horseradish Peroxides as a Nanobiocatalyst for Superior Enzymatic Activity. Enzyme Microb. Technol. 2015, 75–76, 25–29. DOI: 10.1016/j.enzmictec.2015.04.010.
  • Zhao, F.; Wang, Q.; Dong, J.; Xian, M.; Yu, J.; Yin, H.; Chang, Z.; Mu, X.; Hou, T.; Wang, J. Enzyme-Inorganic Nanoflowers/Alginate Microbeads: An Enzyme Immobilization System and Its Potential Application. Process Biochem. 2017, 57, 87–94. DOI: 10.1016/j.procbio.2017.03.026.
  • Zhang, B.; Li, P.; Zhang, H.; Wang, H.; Li, X.; Tian, L.; Ali, N.; Ali, Z.; Zhang, Q. Preparation of Lipase/Zn3(Po4)2 Hybrid Nanoflower and Its Catalytic Performance as an Immobilized Enzyme. Chem. Eng. J. 2016, 291, 287–297. DOI: 10.1016/j.cej.2016.01.104.
  • Zhang, L.; Abdullah, R.; Hu, X.; Bai, H.; Fan, H.; He, L.; Liang, H.; Zou, J.; Liu, Y.; Sun, Y.; et al. Engineering of Bioinspired, Size-Controllable, Self-Degradable Cancer-Targeting DNA Nanoflowers via the Incorporation of an Artificial Sandwich Base. J. Am. Chem. Soc. 2019, 141, 4282–4290. DOI: 10.1021/jacs.8b10795.
  • Cui, J.; Zhao, Y.; Liu, R.; Zhong, C.; Jia, S. Surfactant-Activated Lipase Hybrid Nanoflowers with Enhanced Enzymatic Performance. Sci. Rep. 2016, 6, 27928. DOI: 10.1038/srep27928.
  • Li, L.; Weng, J. Enzymatic Synthesis of Gold Nanoflowers with Trypsin. Nanotechnology 2010, 21, 305603. DOI: 10.1088/0957-4484/21/30/305603.
  • Nadar, S. S.; Gawas, S. D.; Rathod, V. K. Self-Assembled Organic-Inorganic Hybrid Glucoamylase Nanoflowers with Enhanced Activity and Stability. Int. J. Biol. Macromol. 2016, 92, 660–669. DOI: 10.1016/j.ijbiomac.2016.06.071.
  • Dadi, S.; Celik, C.; Mandal, A. K.; Ocsoy, I. Dopamine and Norepinephrine Assistant-Synthesized Nanoflowers Immobilized Membrane with Peroxidase Mimic Activity for Efficient Detection of Model Substrates. Appl. Nanosci. 2021, 11, 117–125. DOI: 10.1007/s13204-020-01577-7.
  • Baldemir, A.; Köse, N. B.; Ildız, N.; İlgün, S.; Yusufbeyoğlu, S.; Yilmaz, V.; Ocsoy, I. Synthesis and Characterization of Green Tea (Camellia sinensis (L.) Kuntze) Extract and Its Major Components-Based Nanoflowers: A New Strategy to Enhance Antimicrobial Activity. RSC Adv. 2017, 7, 44303–44308. DOI: 10.1039/C7RA07618E.
  • Ildiz, N.; Baldemir, A.; Altinkaynak, C.; Özdemir, N.; Yilmaz, V.; Ocsoy, I. Self Assembled Snowball-Like Hybrid Nanostructures Comprising Viburnum Opulus L. Extract and Metal Ions for Antimicrobial and Catalytic Applications. Enzyme Microb. Technol. 2017, 102, 60–66. DOI: 10.1016/j.enzmictec.2017.04.003.
  • Demirbas, A. Antimicrobial and Catalytic Activity of Citrus Fruits Peels Mediated Nano-Flowers. J. Biol. Macromol. 2020, 20, 41–51. DOI: 10.14533/jbm.20.41.
  • Altinkaynak, C.; Ildiz, N.; Baldemir, A.; Özdemir, N.; Yılmaz, V.; Ocsoy, I. Synthesis of Organic-Inorganic Hybrid Nanoflowers Using Trigonella Foenum-Graecum Seed Extract and Investigation of Their anti-Microbial Activity. Derim 2019, 36, 159–167.
  • Nhung, T. T.; Bu, Y.; Lee, S. W. Facile Synthesis of Chitosan-Mediated Gold Nanoflowers as Surface-Enhanced Raman Scattering (Sers) Substrates. J. Cryst. Growth 2013, 373, 132–137. DOI: 10.1016/j.jcrysgro.2012.09.042.
  • Zaman, S.; Asif, M. H.; Zainelabdin, A.; Amin, G.; Nur, O.; Willander, M. CuO Nanoflowers as an Electrochemical pH Sensor and the Effect of pH on the Growth. J. Electroanal. Chem. 2011, 662, 421–425. DOI: 10.1016/j.jelechem.2011.09.015.
  • Celik, C.; Ildiz, N.; Ocsoy, I. Building Block and Rapid Synthesis of Catecholamines-Inorganic Nanoflowers with Their Peroxidase-Mimicking and Antimicrobial Activities. Sci. Rep. 2020, 10, 2903.
  • Wu, Z. F.; Wang, Z.; Zhang, Y.; Ma, Y. L.; He, C. Y.; Li, H.; Chen, L.; Huo, Q. S.; Wang, L.; Li, Z. Q. Amino Acids-Incorporated Nanoflowers with an Intrinsic Peroxidase-Like Activity. Sci. Rep. 2016, 6, 22412. DOI: 10.1038/srep22412.
  • Lee, H. R.; Chung, M.; Kim, M. I.; Ha, S. H. Preparation of Glutaraldehyde-Treated Lipase-İnorganic Hybrid Nanoflowers and Their Catalytic Performance as Immobilized Enzymes. Enzyme Microb. Technol. 2017, 105, 24–29. DOI: 10.1016/j.enzmictec.2017.06.006.
  • Saleh, A. T. Simultaneous Adsorptive Desulfurization of Diesel Fuel over Bimetallic Nanoparticles Loaded on Activated Carbon. J. Clean. Prod. 2018, 172, 2123–2123. DOI: 10.1016/j.jclepro.2017.11.208.
  • Saleh, A. T. Nanocomposite of Carbon Nanotubes/Silica Nanoparticles and Their Use for Adsorption of Pb(II): from Surface Properties to Sorption Mechanism. Desalin. Water Treat. 2016, 57, 10730–10744. DOI: 10.1080/19443994.2015.1036784.
  • Li, M.; Luo, M.; Li, F.; Wang, W.; Liu, K.; Liu, Q.; Wang, Y.; Lu, Z.; Wang, D. Biomimetic Copper-Based Inorganic-Protein Nanoflower Assembly Constructed on the Nanoscale Fibrous Membrane with Enhanced Stability and Durability. J. Phys. Chem. C. 2016, 120, 17348–17356. DOI: 10.1021/acs.jpcc.6b03537.
  • Dadi, S.; Celik, C.; Ocsoy, I. Gallic Acid Nanoflower Immobilized Membrane with Peroxidase-like Activity for m-Cresol Detection. Sci. Rep. 2020, 10, 16765. DOI: 10.1038/s41598-020-73778-7.
  • Baldemir, A.; Karaman, Ü.; Yusufbeyoğlu, S.; Eken, A.; Ildız, N.; İlgün, S.; Çolak, C.; Kaçmaz, G.; Öçsoy, İ.; Çankaya, S. A New Strategy for Enhancing Acanthamoebicidal Activity with Synthesis of Nanoflower of Laurocerausus officinalis Roemer (Cherry laurel) Fruit Extracts. Mikrobiyol. Bul. 2018, 52, 56–71. DOI: 10.5578/mb.66400.
  • Koca, F. D.; Demirezen Yilmaz, D.; Ertas Onmaz, N.; Yilmaz, E.; Ocsoy, I. Green Synthesis of Allicin Based Hybrid Nanoflowers with Evaluation of Their Catalytic and Antimicrobial Activities. Biotechnol. Lett. 2020, 42, 1683–1690. DOI: 10.1007/s10529-020-02877-2.
  • Baldemir Kılıç, A.; Altınkaynak, C.; Ildiz, N.; Ozdemir, N.; Yilmaz, V.; Ocsoy, I. A New Approach for Green Synthesis and Characterization of Artemisia L. (Asteraceae) Genotype Extracts -Cu2+ Nanocomplexes (Nanoflower) and Their Effecitve Antimicrobial Activity. Med. Sci. 2020, 9, 191–196. DOI: 10.5455/medscience.2019.08.9165.
  • Vallabani, N. V. S.; Vinu, A.; Singh, S.; Karakoti, A. Tuning the ATP-Triggered Pro-Oxidant Activity of Iron Oxide-Based Nanozyme towards an Efficient Antibacterial Strategy. J. Colloid Interface Sci. 2020, 567, 154–164. DOI: 10.1016/j.jcis.2020.01.099.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.