78
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synthesis of phosphoric triamide nanostructures, characterization, X-ray crystallography, and preparation of P2O5-RGO nanocomposites by solvothermal method

, ORCID Icon, ORCID Icon &
Pages 39-51 | Received 12 Apr 2021, Accepted 28 Aug 2021, Published online: 24 Sep 2021

References

  • Cui, L.; Lu, X.; Chao, D.; Liu, H.; Li, Y.; Wang, C. Graphene‐Based Composite Materials with High Dielectric Permittivity via an in Situ Reduction Method. Phys. stat. sol. (A) 2011, 208, 459–461. DOI: 10.1002/pssa.201026273.
  • Wu, Y.; Wang, Z. Y.; Liu, X.; Shen, X.; Zheng, Q. B.; Xue, Q.; Kim, J. K. Ultralight Graphene Foam/Conductive Polymer Composites for Exceptional Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces. 2017, 9, 9059–9069.
  • Li, Y.; Tang, J.; Huang, L.; Wang, Y.; Liu, J.; Ge, X.; Tjong, S. C.; Li, R. K. Y.; Belfiore, L. A. Facile Preparation, Characterization and Performance of Noncovalently Functionalized Graphene/Epoxy Nanocomposites with Poly (Sodium 4-Styrenesulfonate). Compos. Part A Appl. Sci. Manuf. 2015, 68, 1–9. DOI: 10.1016/j.compositesa.2014.09.016.
  • Chang, H. X.; Sun, Z.; Saito, M.; Yuan, Q.; Zhang, H.; Li, J.; Wang, Z.; Fujita, T.; Ding, F.; Zheng, Z.; et al. Regulating Infrared Photoresponses in Reduced Graphene Oxide Phototransistors by Defect and Atomic Structure Control. ACS Nano. 2013, 7, 6310–6320.
  • Kamat, P. V. Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support. J. Phys. Chem. Lett. 2010, 1, 520–527. DOI: 10.1021/jz900265j.
  • Zhou, X.; Qiao, J.; Yang, L.; Zhang, J. A Review of Graphene-Based Nanostructural Materials for Both Catalyst Supports and Metal-Free Catalysts in PEM Fuel Cell Oxygen Reduction Reactions. Adv. Energy Mater. 2014, 4, 1301523–1301525. [Database] DOI: 10.1002/aenm.201301523.
  • Ping, J.; Zhou, Y.; Wu, Y.; Papper, V.; Boujday, S.; Marks, R. S.; Steele, T. W. J. Recent Advances in Aptasensors Based on Graphene and Graphene-like Nanomaterials. Biosens. Bioelectron. 2015, 64, 373–385.
  • Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498–3502.
  • (a) Chang, H. X.; Sun, Z.; Ho, K. Y.-F.; Tao, X.; Yan, F.; Kwok, W.-M.; Zheng, Z.; A Highly Sensitive Ultraviolet Sensor Based on a Facile in Situ Solution-Grown ZnO Nanorod/Graphene Heterostructure. Nanoscale 2011, 406, 258–264. 3. (b) Xu, C.; Xu, B.; Gu, Y.; Xiong, Z.; Sun, J.; Zhao, X.; Graphene-Based Electrodes for Electrochemical Energy Storage. Energy Environ. Sci. 2013, 6, 1388–1414. (c) Saleh, T. A.; Trends in the Sample Preparation and Analysis of Nanomaterials as Environmental Contaminants. Trends Environ. Anal. Chem. 2020, 2, e00101. (d) Alansi, A. M.; Al-Qunaibit, M.; Alade, I. O.; Qahtan, T. F.; Saleh, T. A.; Visible-Light Responsive BiOBr Nanoparticles Loaded on Reduced Grapheme Oxide for Photocatalytic Degradation of Dye. J. Mol. Liq. 2018, 2, 297–304. (e) Alansi, A. M.; Qahtan, T. F.; Saleh, T. A.; Solar-Driven Fixation of Bismuth Oxyhalides on Reduced Graphene Oxide for Efficient Sunlight-Responsive Immobilized Photocatalytic Systems. Adv. Mater. Interfaces 2020, 2001463. (f) Saleh, T. A.; Al-Hammadi, S. A. A Novel Catalyst of Nickel-Loaded Graphene Decorated on Molybdenum-Alumina for the HDS of Liquid Fuels. Chem. Eng. J. 2021, 125167.
  • Si, Y. C.; Samulski, E. T. Exfoliated Graphene Separated by Platinum Nanoparticles. Chem. Mater. 2008, 20, 6792–6797. [Database] DOI: 10.1021/cm801356a.
  • Zhou, A.; Zhu, W.; Cheng, J.; Liu, C.; Yang, J.; Cong, H.; Guan, C.; Jia, C.; Fan, X.; Yan, H. J.; et al. Palladium–Phosphorus/Sulfur Nanoparticles (NPs) Decorated on Graphene Oxide: synthesis Using the Same Precursor for NPs and Catalytic Applications in Suzuki–Miyaura Coupling. Nanoscale 2014, 6, 4588–4597.
  • Kim, D.; Huh, Y. D.; Morphology-Dependent Photocatalytic Activities of Hierarchical Microstructures of ZnO. Mater. Lett. 2011, 182, 2100–2103. 6.; b) Yanez-Vilar, S.; Sanchez-Andujar, M.; Gomez-Aguirre, C.; Mira, J.; Senaris-Rodrıguez, M. A.; Castro-Garcia, S. A Simple Solvothermal Synthesis of MFe2O4 (M = Mn, Co, and Ni) Nanoparticles. J. Solid State Chem. 2009, 2685–2690.
  • Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. P25-Graphene Composite as a High Performance Photocatalyst. ACS Nano. 2010, 4, 380–386.
  • Shen, J. F.; Shi, M.; Yan, B.; Ma, H. W.; Li, N.; Ye, M. X. One-Pot Hydrothermal Synthesis of Ag-Reduced Graphene Oxide Composite with Ionic Liquid. J. Mater. Chem. 2011, 21, 7795–7801. DOI: 10.1039/c1jm10671f.
  • Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.
  • Kumar, R.; Nandi, G. C.; Verma, R. K.; Singh, M. S. A Facile Approach for the Synthesis of 14-Aryl-Oralkyl-14H-Dibenzo[a, j]Xanthenes under Solvent-Free Condition. Tetrahedron Lett. 2010, 51, 442–445. DOI: 10.1016/j.tetlet.2009.11.064.
  • Nandi, G. C.; Samai, S.; Kumar, R.; Singh, M. S. An Efficient One-Pot Synthesis of Tetrahydrobenzo [a] Xanthene-11-One and Diazabenzo [a] Anthracene-9, 11-Dione Derivatives under Solvent Free Condition. Tetrahedron 2009, 65, 7129–7134. DOI: 10.1016/j.tet.2009.06.024.
  • Rostamizadeh, S.; Ghamkhar, S. A Mild and Facile Method for One Pot Synthesis of 2, 5-di-Substituted 1, 3, 4-Oxadiazoles at Room Temperature. Chin. Chem. Lett. 2008, 19, 639–642. DOI: 10.1016/j.cclet.2008.03.027.
  • Meier, M. S. Phosphorus(V) Oxide in Encyclopedia of Reagents for Organic Synthesis, ed. by L. Paquette (J. Wiley &Sons, New York, 2004).
  • Eshghi, H.; Hassankhani, A. Synthesis of Nanostructured AlN by Solid State Reaction of Al and Diaminomaleonitrile. J. Iran. Chem. Soc. 2012, 9, 467–482. DOI: 10.1007/s13738-011-0057-0.
  • Agilent TechnologiesCrysAlis PRO (Version 1.171.33.36d), Agilent Technologies Ltd, 2011.
  • Sheldrick, G. M. SHELXT- Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. DOI: 10.1107/S2053273314026370.
  • Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. DOI: 10.1107/S2053229614024218.
  • Johnson, O.; Murray, M.; Woodward, G. Reactions of Amine Hydrochlorides with Phosphorus Trichloride Oxide; Preparation and X-Ray Crystal Structure of 2,4,6-Trichloro-1,3,5-Triphenyl-1,3,5,2λ5,4λ5,6λ5-Triazatriphosphorinane 2,4,6-Trioxide (PhNPOCl)3. J. Chem. Soc., Dalton Trans. 1989, 5, 821–827. DOI: 10.1039/DT9890000821.
  • Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339. DOI: 10.1021/ja01539a017.
  • (a) Zhao, Y.; Liao, X.-H.; Hong, J.-M.; Zhu, J.-J.; Synthesis of Lead Sulfide Nanocrystals via Microwave and Sonochemical Methods. Mater. Chem. Phys. 2004, 87, 149–153. (b) Zhu, Y.-J.; Chen, F.; Microwave-Assisted Preparation of Inorganic Nanostructures in Liquid Phase. Chem. Rev. 2014, 114, 6462–6555. (c) Indira, J.; Malathi, K. S. Comparison of template mediated ultrasonic and microwave irradiation method on the synthesis of hydroxyapatite nanoparticles for biomedical applications. Mater. Today Proc. In Press. Science Direct, Elsevier.
  • Li, D.; Wang, J.; Wu, X.; Feng, C.; Li, X. Ultraviolet-Assisted Synthesis of Hourglass-like ZnO Microstructure through an Ultrasonic and Microwave Combined Technology. Ultrason. Sonochem. 2013, 20, 133–136.
  • Corbridge, D. E. C. Phosphorus, an Outline of Its Chemistry, Biochemistry and Technology 5th ed. (Elsevier, The Netherlands, 1995).
  • Gilheany, D. G. No d Orbitals but Walsh Diagrams and Maybe Banana Bonds: Chemical Bonding in Phosphines, Phosphine Oxides, and Phosphonium Ylides. Chem. Rev. 1994, 94, 1339–1374. DOI: 10.1021/cr00029a008.
  • Gholivand, K.; Shariatinia, Z.; Pourayoubi, M. 2J(P,C) and 3J(P,C) Coupling Constants in Some New Phosphoramidates. Crystal Structures of CF3C(O)N(H)P(O)[N(CH3)(CH2C6H5)]2 and 4‐NO2‐C6H4N(H)P(O)[4‐CH3‐NC5H9]2. Z Anorg. Allg. Chem. 2005, 631, 961–967. DOI: 10.1002/zaac.200400517.
  • Gholivand, K.; Hosseini, Z.; Pourayoubi, M.; Shariatinia, Z. Synthesis and Spectroscopic Study of Some New Phosphoramidates, Crystal Structures of N-Benzoyl-N′, N″-Bis(Azetidinyl)Phosphoric Triamide and N-Benzoyl-N′, N″-Bis(Hexamethylenyl)Phosphoric Triamide. Z Anorg. Allg. Chem. 2005, 631, 3074–3079. DOI: 10.1002/zaac.200500274.
  • Gubina, K. E.; Amirkhanov, V. M. Carbacylamidophosphates: Synthethis and Structure of N,N'-Tetramethyl-Ń-ρ-chlorobenzoyIphosphoryltriamide and N, N'-Tetramethyl-Ń-ρ-Fluorobenzoylphosphoryltriamide. Z. Naturforsch. 2000, 55b, 1015–1019.
  • (a) Aghabozorg, H.; Nemati, A.; Derikvand, Z.; Ghadermazi, M.; Poly [Piperazinediium [[Aquabismuthate (III)]-di-μ-Pyridine-2, 6-Dicarboxylato-Bismuthate (III)-di-μ-Pyridine-2, 6-Dicarboxylato] Monohydrate]. Acta Crystallogr. 2008, E, m374–m374. (b) Aghabozorg, H.; Nemati, A.; Derikvand, Z.; Ghadermazi, M.; Piperazinediium Bis [Bis (Pyridine-2, 6-Dicarboxylato) Ferrate (III)] Monohydrate. Acta Crystallogr. 2007, E, m2921–m2921. (c) Derikvand, Z.; Aghabozorg, H.; Attar Gharamaleki, J.; Acridinium 3, 5-Dicarboxybenzoate Monohydrate., Acta Crystallogr. 2009, E, o1173–o1173. (d) Aghabozorg, H.; Derikvand, Z.; Olmstead, M. M.; Attar Gharamaleki, J. Hydroxonium Hydrate Tris (2, 4, 6-Triamino-1, 3, 5-Triazin-1-Ium) Bis [Bis (Pyridine-2, 6-Dicarboxylato) Manganate (II/III)] Hydroxide Pyridine-2, 6-Dicarboxylic Acid Solvate Pentahydrate. Acta Crystallogr. 2008, C64, m372–m374.
  • Pinna, N.; Grancharov, S.; Beato, P.; Bonville, P.; Antonietti, M.; Niederberger, M. Magnetite Nanocrystals: Nonaqueous Synthesis, Characterization, and Solubility. Chem. Mater. 2005, 17, 3044–3049. DOI: 10.1021/cm050060+.
  • Zhang, R.; Cai, Y.; Zhu, X.; Han, Q.; Zhang, T.; Liu, Y.; Li, Y.; Wang, A. A Novel Photocatalytic Membrane Decorated with PDA/RGO/Ag3PO4 for Catalytic Dye Decomposition. Colloids Surf. A Physicochem. Eng. Asp. 2019, 563, 68–76. DOI: 10.1016/j.colsurfa.2018.11.069.
  • Xie, G. Q.; Xi, P. X.; Liu, H. Y.; Chen, F. J.; Huang, L.; Shi, Y. J.; Hou, F. P.; Zeng, Z. Z.; Shao, C. W.; Wang, J. A Facile Chemical Method to Produce Superparamagnetic Graphene oxide-Fe3O4 Hybrid Composite and Its Application in the Removal of Dyes from Aqueous Solution. J. Mater. Chem. 2012, 22, 1033–1039. DOI: 10.1039/C1JM13433G.
  • Liu, J. C.; Bai, H. W.; Wang, Y. J.; Liu, Z. Y.; Zhang, X. W.; Sun, D. D. Self-Assembling TiO2 Nanorods on Large Graphene Oxide Sheets at a Two-Phase Interface and Their anti-Recombination in Photocatalytic Applications. Adv. Funct. Mater. 2010, 20, 4175–4181. DOI: 10.1002/adfm.201001391.
  • Zhang, J.; Xiong, Z.; Zhao, X. S. Graphene–Metal–Oxide Composites for the Degradation of Dyes under Visible Light Irradiation. J. Mater. Chem. 2011, 21, 3634–3640. DOI: 10.1039/c0jm03827j.
  • Zhang, L. L.; Zhou, R.; Zhao, X. S. Graphene-Based Materials as Supercapacitor Electrodes. J. Mater. Chem. 2010, 20, 5983–5992. [Database] DOI: 10.1039/c000417k.
  • Ma, M.-G.; Zhu, J.-F.; Li, S.-M.; Jia, N.; Sun, R.-C. Nanocomposites of Cellulose/Iron Oxide: influence of Synthesis Conditions on Their Morphological Behavior and Thermal Stability. Mater. Sci. Eng. C 2012, 32, 1511–1517. DOI: 10.1016/j.msec.2012.04.033.
  • Lee, D. W.; De, V. L.; Santos, L.; Seo, J. W.; Felix, L. L.; Bustamante, D. A.; Cole, J. M.; Barnes, C. H. W. The Structure of Graphite Oxide: Investigation of Its Surface Chemical Groups. J. Phys. Chem. B. 2010, 114, 5723–5728.
  • Shen, J. F.; Shi, M.; Li, N.; Yan, B.; Ma, H. W.; Hu, Y. Z.; Ye, M. X. Facile Synthesis and Application of Ag-Chemically Converted Graphene Nanocomposite. Nano Res. 2010, 3, 339–349. DOI: 10.1007/s12274-010-1037-x.
  • Acik, M.; Lee, G.; Mattevi, C.; Pirkle, A.; Wallace, R. M.; Chhowalla, M.; Cho, K.; Chabal, Y. The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy. J. Phys. Chem. C. 2011, 115, 19761–19781. DOI: 10.1021/jp2052618.
  • Chen, D.; Feng, H.; Li, J. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem. Rev. 2012, 112, 6027–6053.
  • Ponnuswamy, V.; Ashokan, S.; Jayamurugan, P.; Karthikeyani, D.; Suba Rao, Y. V. Optical, Thermal and Morphological Properties of PANI/P2O5 Composites. Optik 2015, 126, 19–23. DOI: 10.1016/j.ijleo.2014.06.173.
  • Shi, L.; Chen, D.; Xie, W.; Zhang, J.; Ping, G.; Fan, M.; Qin, L.; Bai, L.; Chen, Z.; Lv, C.; Shu, K. Facile Synthesis of Graphene–Enwrapped Ag3PO4 Composites with Highly Efficient Visible Light Photocatalytic Performance. Nano. 2016, 11, 1650001. DOI: 10.1142/S1793292016500016.
  • Nethravathi, C.; Nisha, T.; Ravishankar, N.; Shivakumara, C.; Rajamathi, M. Graphene-Nanocrystalline Metal Sulphide Composites Produced by a One-Pot Reaction Starting from Graphite Oxide. Carbon 2009, 47, 2054–2059. DOI: 10.1016/j.carbon.2009.03.055.
  • Abdelhamid, H. N.; Wu, H. F. Facile Synthesis of Nano Silver Ferrite (AgFeO2) Modified with Chitosan Applied for Biothiol Separation. Mater. Sci. Eng. C 2014, 45, 438–445. DOI: 10.1016/j.msec.2014.08.071.
  • Liang, Y. Y.; Wang, H. L.; Casalongue, H. S.; Chen, Z.; Dai, H. TiO2 Nanocrystals Grown on Graphene as Advanced Photocatalytic Hybrid Materials. Nano Res. 2010, 701–705.
  • Liu, X. J.; Pan, L. K.; Lv, T.; Lu, T.; Zhu, G.; Sun, Z.; Sun, C. Q. Microwave-Assisted Synthesis of ZnO-Graphene Composite for Photocatalytic Reduction of Cr(vi). Catal. Sci. Technol. 2011, 1, 1189–1193. DOI: 10.1039/c1cy00109d.
  • Baglee, D. A.; Laughlin, D. H.; Wilmsen, C. W.; Ferry, D. K. Anodic Oxide Insulators on InP and InAs. Phys. MOS Insulat. 1980, 1980, 191–196.
  • Sagadevan, S.; Chowdhury, Z. Z.; Bin Johan, M. R.; Rafique, R. F.; Abdul Aziz, F. One Pot Synthesis of Hybrid ZnS–Graphene Nanocomposite with Enhanced Photocatalytic Activities Using Hydrothermal Approach. J. Mater. Sci.: Mater. Electron. 2018, 29, 9099–9107.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.