164
Views
1
CrossRef citations to date
0
Altmetric
Articles

Magneto-structural properties and reliability of (Mn/Ni/Zn) substituted cobalt-copper ferrite heterogeneous catalyst for selective and efficient oxidation of aryl alcohols

ORCID Icon, ORCID Icon, , , , & show all
Pages 52-65 | Received 09 May 2021, Accepted 28 Aug 2021, Published online: 24 Sep 2021

References

  • Abad, A.; Almela, C.; Corma, A.; Garcia, H. Unique Gold Chemoselectivity for the Aerobic Oxidation of Allylic Alcohols. Chem. Commun. 2006, 3178–3180. DOI: 10.1039/B606257A.
  • Sheldon, R. A.; Van Santen, R. A. Catalytic Oxidation: Principles and Applications—A Course of The Netherlands Institute for Catalysis Research (Niok); World Scientific: Singapore, 1995, pp. 196.
  • Waffel, D.; Alkan, B.; Fu, Q.; Chen, Y. T.; Schmidt, S.; Schulz, C.; Wiggers, H.; Muhler, M.; Peng, B. Towards Mechanistic Understanding of Liquid‐Phase Cinnamyl Alcohol Oxidation with tert‐Butyl Hydroperoxide over Noble‐Metal‐Free LaCo1–xFexO3 Perovskites. ChemPlusChem. 2019, 84, 1155–1163. DOI: 10.1002/cplu.201900429.
  • Sheldon, R. A.; Kochi, J. Metal-Catalysed Oxidations of Organic Compounds; Academic Press: New York, 1981.
  • Hudlicky, M. Oxidations in Organic Chemistry, ACS Monograph; American Chemical Society: Washington, DC, 1990.
  • Chatel, G.; Monnier, C.; Kardos, N.; Voiron, C.; Andrioletti, B.; Draye, M. Green, Selective and Swift Oxidation of Cyclic Alcohols to Corresponding Ketones. App. Catal. A: Gen. 2014, 478, 157–164. DOI: 10.1016/j.apcata.2014.03.033.
  • He, J.; Yang, S.; Riisager, A. Magnetic Nickel Ferrite Nanoparticles as Highly Durable Catalysts for Catalytic Transfer Hydrogenation of Bio-Based Aldehydes. Catal. Sci. Technol. 2018, 8, 790–797. DOI: 10.1039/C7CY02197F.
  • Zolfigol, M. A.; Hajjami, M.; Ghorbani-Choghamarani, A. Poly(4-Vinylpyridinium Tribromide) as Metal-Free and Recoverable Oxidizing Agent for the Selective Oxidation of Alcohols, and Oxidative Deprotection of Trimethylsily Ethers. J. Iran. Chem. Soc. 2012, 9, 13–18. DOI: 10.1007/s13738-011-0011-1.
  • Cardona, F.; Parmegiani, C. Transition Metal Catalysis in Aerobic Alcohol Oxidation; Royal Society of Chemistry: London, 2014.
  • Zhang, Q.; Liu, J.-B.; Chen, L.; Xiao, C.-X.; Chen, P.; Shen, S.; Guo, J.-K.; Au, C.-T.; Yin, S.-F. An Etching and Re-Growth Method for the Synthesis of Bismuth Ferrite/MIL-53(Fe) Nanocomposite as Efficient Photocatalyst for Selective Oxidation of Aromatic Alcohols. Appl. Catal. B. Environ. 2020, 264, 118529. DOI: 10.1016/j.apcatb.2019.118529.
  • Parmeggiani, C.; Cardona, F. Transition Metal Based Catalysts in the Aerobic Oxidation of Alcohols. Green Chem. 2012, 14, 547–564. DOI: 10.1039/c2gc16344f.
  • Patil, M. R.; Rendale, M. K.; Mathad, S. N.; Pujar, R. B. Electrical and Magnetic Properties of Cd2+ Doped Ni-Zn Ferrites. Inorg. Nano-Met. Chem. 2017, 47, 1145–1149.
  • Tatarchuk, T.; Myslin, M.; Lapchuk, I.; Shyichuk, A.; Murthy, A. P.; Gargula, R.; Kurzydło, P.; Bogacz, B. F.; Pędziwiatr, A. T. Magnesium-Zinc Ferrites as Magnetic Adsorbents for Cr(VI) and Ni(II) Ions Removal: Cation Distribution and Antistructure Modeling. Chemosphere 2021, 270, 129414. DOI: 10.1016/j.chemosphere.2020.129414.
  • Tatarchuk, T.; Shyichuk, A.; Sojka, Z.; Gryboś, J.; Naushad, M.; Kotsyubynsky, V.; Kowalska, M.; Kwiatkowska-Marks, S.; Danyliuk, N. Green Synthesis, Structure, Cations Distribution and Bonding Characteristics of Superparamagnetic Cobalt-Zinc Ferrites Nanoparticles for Pb(II) Adsorption and Magnetic Hyperthermia Applications. J. Mol. Liq. 2021, 328, 115375. DOI: 10.1016/j.molliq.2021.115375.
  • Mohammadi Ziarani, G.; Kazemi Asl, Z.; Gholamzadeh, P.; Badiei, A.; Afshar, M. Magnetic Nanocrystallites Strontium Hexaferrite as an Efficient Catalyst in the Green Betti Reaction. Inorg. Nano-Met. Chem. 2018, 48, 515–520. DOI: 10.1080/24701556.2019.1574816.
  • Abouzir, E.; Elansary, M.; Belaiche, M.; Jaziri, H. Magnetic and Structural Properties of Single-Phase Gd3+-Substituted Co-Mg Ferrite Nanoparticles. RSC Adv. 2020, 10, 11244–11256. DOI: 10.1039/D0RA01841D.
  • Zalite, I.; Heidemane, G.; Krumina, A.; Rasmane, D.; Maiorov, M. ZnFe2O4 Containing Nanoparticles: Synthesis and Magnetic Properties. Mater. Sci. Appl. Chem. 2017, 34, 38–44.
  • Wei, F.; Wang, H.; Ran, W.; Liu, T.; Liu, X. Preparation of S-N co-Doped CoFe2O4@rGO@TiO2 Nanoparticles and Their Superior UV-Vis Light Photocatalytic Activities. RSC Adv. 2019, 961, 6152–6162.
  • Shi, F.; Tse, M. K.; Pohl, M. M.; Bruckner, A.; Zhang, S.; Beller, M. Tuning Catalytic Activity between Homogeneous and Heterogeneous Catalysis: Improved Activity and Selectivity of Free Nano‐Fe2O3 in Selective Oxidations. Angew. Chem. Int. Ed. Engl. 2007, 46, 8866–8868.
  • Khan, A.; Smirniotis, P. G. Relationship between Temperature-Programmed Reduction Profile and Activity of Modified Ferrite-Based Catalysts for WGS Reaction. J. Mol. Catal. Chem. 2008, 280, 43–51. DOI: 10.1016/j.molcata.2007.10.022.
  • Dasari, G. K.; Sunkara, S.; Gadupudi, P. C. R. One-Step Synthesis of Magnetically Recyclable Palladium Loaded Magnesium Ferrite Nanoparticles: Application in Synthesis of Anticancer Drug PCI-32765. Inorg. Nano-Met Chem. 2020, 50, 753–763.
  • Paul, B.; Bhuyan, B.; Purkayastha, D. D.; Dhar, S. S. Facile Synthesis of α-Fe2O3 Nanoparticles and Their Catalytic Activity in Oxidation of Benzyl Alcohols with Periodic Acid. Catal. Commun. 2015, 69, 48–54. DOI: 10.1016/j.catcom.2015.05.017.
  • Paul, B.; Purkayastha, D. D.; Dhar, S. S. One-Pot Hydrothermal Synthesis and Characterization of CoFe2O4 Nanoparticles and Its Application as Magnetically Recoverable Catalyst in Oxidation of Alcohols by Periodic Acid. Mater. Chem. Phys. 2016, 181, 99–105. DOI: 10.1016/j.matchemphys.2016.06.039.
  • Lou, J. C.; Tu, Y. J. Incinerating Volatile Organic Compounds with Ferrospinel Catalyst MnFe2O4: An Example with Isopropyl Alcohol. J. Air Waste Manag. 2005, 55, 1809–1815. DOI: 10.1080/10473289.2005.10464777.
  • Gaikwad, P. V.; Kamble, R. J.; Mane-Gavade, S. J.; Sabale, S. R.; Kamble, P. D. Magneto-Structural Properties and Photocatalytic Performance of Sol-Gel Synthesized Cobalt Substituted Ni-Cu Ferrites for Degradation of Methylene Blue under Sunlight. Phys. B. Condens. Matter. 2019, 554, 79–85. DOI: 10.1016/j.physb.2018.11.032.
  • Gaikwad, P.; Zimur, S.; Sabale, S.; Kamble, P. Co2+ Substituted ZnCuFe2O4 (0.0 ≤ x ≤ 0.5) Ferrites: Synthesis, Magneto-Structural and Optical Properties for Their Photocatalytic Performance. J. Supercond. Nov. Magn. 2019, 32, 2551–2558. DOI: 10.1007/s10948-018-4982-3.
  • Sabale, S.; Jadhav, Mane-Gavade, V. S.; Yu, X. Superparamagnetic CoFe2O4@Au with High Specific Absorption Rate and Intrinsic Loss Power for Magnetic Fluid Hyperthermia Applications. Acta Metall. Sin. (Engl. Lett.) 2019, 32, 719–725. DOI: 10.1007/s40195-018-0830-5.
  • Gabal, M. Effect of Mg Substitution on the Magnetic Properties of NiCuZn Ferrite Nanoparticles Prepared through a Novel Method Using Egg White. J. Magn. Magn. Mater. 2009, 321, 3144–3148. DOI: 10.1016/j.jmmm.2009.05.047.
  • Guo, X.; Xu, Y.; Wang, K.; Zha, F.; Tang, X.; Tian, H. Synthesis of Magnetic CuFe2O4 Self-Assembled Hollow Nanospheres and Its Application for Degrading Methylene Blue. Res. Chem. Intermed. 2020, 46, 853–869. DOI: 10.1007/s11164-019-03994-y.
  • Li, L.; Cheah, Y.; Ko, Y.; Teh, P.; Wee, G.; Wong, C.; Peng, S.; Srinivasan, M. The Facile Synthesis of Hierarchical Porous Flower-like NiCo2O4 with Superior Lithium Storage Properties. J. Mater. Chem. A. 2013, 1, 10935–10941. DOI: 10.1039/c3ta11549f.
  • Hou, X.; Xue, S.; Liu, M.; Shang, X.; Fu, Y.; He, D. Hollow Irregular Octahedra-like NiCo2O4 Cages Composed of Mesoporous Nanosheets as a Superior Anode Material for Lithium-Ion Batteries. Chem. Eng. J. 2018, 350, 29–36. DOI: 10.1016/j.cej.2018.05.164.
  • Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W.; Gerson, A. R.; Smart, R. S. C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Database] DOI: 10.1016/j.apsusc.2010.10.051.
  • Tirsoaga, A.; Fergani, M. E.; Nuns, N.; Simon, P.; Granger, P.; Parvulescu, V. I.; Coman, S. M. Multifunctional Nanocomposites with Non-Precious Metals and Magnetic Core for 5-HMF Oxidation to FDCA. Appl. Catal. B Environ. 2020, 278, 119309. DOI: 10.1016/j.apcatb.2020.119309.
  • Kim, K. J.; Lee, H. J.; Park, J. Y. Cationic Behavior and the Related Magnetic and Magnetotransport Properties of Manganese Ferrite Thin Films. J. Magn. Magn. Mater. 2009, 321, 3706–3711. DOI: 10.1016/j.jmmm.2009.07.021.
  • Fantauzzi, M.; Secci, F.; Angotzi, M. S.; Passiu, C.; Cannas, C.; Rossi, A. Nanostructured Spinel Cobalt Ferrites: Fe and Co Chemical State, Cation Distribution and Size Effects by X-Ray Photoelectron Spectroscopy. RSC Adv. 2019, 9, 19171–19179. DOI: 10.1039/C9RA03488A.
  • Larson, P. E. X-Ray Induced Photoelectron and Auger Spectra of Cu, CuO, Cu2O, and Cu2S Thin Films. J. Electron Spectros. Relat. Phenomena 1974, 4, 213–218. DOI: 10.1016/0368-2048(74)80052-6.
  • Yamashita, T.; Hayes, P. Analysis of XPS Spectra of Fe2+ and Fe3+ Ions in Oxide Materials. Appl. Surf. Sci. 2008, 254, 2441–2449. DOI: 10.1016/j.apsusc.2007.09.063.
  • Mills, P.; Sullivan, J. L. A Study of the Core level electrons in Iron and Its Three Oxides by Means of X-Ray Photoelectron Spectroscopy. J. Phys. D: Appl. Phys. 1983, 16, 723–732. DOI: 10.1088/0022-3727/16/5/005.
  • Biesinger, M. C.; Payne, B. P.; Lau, L. W.; Gerson, A.; Smart, R. S. C. X‐Ray Photoelectron Spectroscopic Chemical State Quantification of Mixed Nickel Metal, Oxide and Hydroxide Systems. Surf. Interface Anal. 2009, 41, 324–332. DOI: 10.1002/sia.3026.
  • Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E. (Eds.), Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer: Eden Prairie, MN, 1979.
  • Zhang, A.; Nan, Z. In Situ Microcalorimetric Investigation on Effects of Surfactants on Cluster-Shaped Ni-Doped Fe3O4 Formation. J. Therm. Anal. Calorim. 2018, 132, 859–868. DOI: 10.1007/s10973-017-6938-4.
  • Moulder, J. F.; Chastain, J.; King, R. C. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics Division, Perkin-Elmer Corp.: Eden Prairie, MN, 1995, pp. 230–232.
  • Naik, C. C.; Gaonkar, S. K.; Furtado, I.; Salker, A. V. Effect of Cu2+ Substitution on Structural, Magnetic and Dielectric Properties of Cobalt Ferrite with Its Enhanced Antimicrobial Property. J. Mater. Sci.: Mater. Electron. 2018, 29, 14746–14761.
  • Liu, J.; Zeng, M.; Yu, R. Surfactant-Free Synthesis of Octahedral ZnO/ZnFe2O4 Heterostructure with Ultrahigh and Selective Adsorption Capacity of Malachite Green. Sci. Rep. 2016, 6, 25074. DOI: 10.1038/srep25074.
  • Biesinger, M. C.; Lau, L. W.; Gerson, A. R.; Smart, R. S. C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Database] DOI: 10.1016/j.apsusc.2010.07.086.
  • Reitz, C.; Suchomski, C.; Haetge, J.; Leichtweiss, T.; Jaglicic, Z.; Djerdj, I.; Brezesinski, T. Soft-Templating Synthesis of Mesoporous Magnetic CuFe2O4 Thin Films with Ordered 3D Honeycomb Structure and Partially Inverted Nanocrystalline Spinel Domains. Chem. Commun. (Camb.) 2012, 48, 4471–4473. DOI: 10.1039/c2cc31006f.
  • Mittal, V. K.; Bera, S.; Nithya, R.; Srinivasan, M. P.; Velmurugan, S.; Narasimhan, S. V. Solid State Synthesis of Mg–Ni Ferrite and Characterization by XRD and XPS. J. Nucl. Mater. 2004, 335, 302–310. DOI: 10.1016/j.jnucmat.2004.05.010.
  • Yan, K.; Wu, X.; An, X.; Xie, X. Facile Synthesis and Catalytic Property of Spinel Ferrites by a Template Method. J. Alloys Compd. 2013, 552, 405–408. DOI: 10.1016/j.jallcom.2012.11.054.
  • Senapati, K. K.; Phukan, P. Magnetically Separable Cobalt Ferrite Nanocatalyst for Aldol Condensations of Aldehydes and Ketones. Bull. Catal. Soc. India 2011, 9, 1–8.
  • Luo, J.; Peng, F.; Yu, H.; Wang, H. Selective Liquid Phase Oxidation of Benzyl Alcohol Catalyzed by Carbon Nanotubes. Chem. Eng. J. 2012, 204, 98–106.
  • Wong, W. L.; Ho, K. P.; Lee, L. Y. S.; So, M. H.; Chan, T. H.; Wong, K. Y. Controlling the Selectivity of the Manganese/Bicarbonate/Hydrogen Peroxide Catalytic System by a Biphasic Pyrrolidinium Ionic Liquid/n-Heptane Medium. Appl. Catal. A. Gen. 2013, 453, 244–249. DOI: 10.1016/j.apcata.2012.12.026.
  • Bijudas, K.; Bashpa, P.; Bipin, V. P.; Nair, L.; Priya, A. P.; Aswathy, M.; Krishnendu, C.; Lisha, P. Selective Synthesis of Benzaldehydes by Hypochlorite Oxidation of Benzyl Alcohols under Phase Transfer Catalysis. Bull. Chem. React. Engg. Catal. 2015, 10, 38–42.
  • Zhu, X.; Yang, D.; Wei, W.; Jiang, M.; Li, L.; Zhu, X.; You, J.; Wang, H. Magnetic Copper Ferrite Nanoparticles/TEMPO Catalyzed Selective Oxidation of Activated Alcohols to Aldehydes under Ligand and Base-Free Conditions in Water. RSC Adv. 2014, 4, 64930–64935. DOI: 10.1039/C4RA14152K.
  • Tatarchuk, T.; Shyichuk, A.; Trawczyńska, I.; Yaremiy, I.; Pędziwiatr, A. T.; Kurzydło, P.; Bogacz, B. F.; Gargula, R. Spinel Cobalt(II) Ferrite-Chromites as Catalysts for H2O2 Decomposition: Synthesis, Morphology, Cation Distribution and Antistructure Model of Active Centers Formation. Ceram. Int. 2020, 46, 27517–27530. DOI: 10.1016/j.ceramint.2020.07.243.
  • Ragupathi, C.; Vijaya, J. J.; Narayanan, S.; Jesudoss, S.; Kennedy, L. J. Highly Selective Oxidation of Benzyl Alcohol to Benzaldehyde with Hydrogen Peroxide by Cobalt Aluminate Catalysis: A Comparison of Conventional and Microwave Methods. Ceram. Int. 2015, 41, 2069–2080. DOI: 10.1016/j.ceramint.2014.10.002.
  • Bhat, P. B.; Bhat, B. R. Magnetically Retrievable Nickel Hydroxide Functionalised AFe2O4 (a = Mn, Ni) Spinel Nanocatalyst for Alcohol Oxidation. Appl. Nanosci. 2016, 6, 425–435. DOI: 10.1007/s13204-015-0456-0.
  • Saranya, R.; Raj, R. A.; AlSalhi, M. S.; Devanesan, S. Dependence of Catalytic Activity of Nanocrystalline Nickel Ferrite on Its Structural, Morphological, Optical, and Magnetic Properties in Aerobic Oxidation of Benzyl Alcohol. J. Supercond. Nov. Magn. 2018, 31, 1219–1225. DOI: 10.1007/s10948-017-4305-0.
  • Jacintha, A. M.; Umapathy, V.; Neeraja, P.; Rajkumar, S. Synthesis and Comparative Studies of MnFe2O4 Nanoparticles with Different Natural Polymers by Sol-Gel Method: Structural, Morphological, Optical, Magnetic, Catalytic and Biological Activities. J. Nanostruct. Chem. 2017, 7, 375–387. DOI: 10.1007/s40097-017-0248-z.
  • Ragupathi, C.; Vijaya, J. J.; Kumar, R. T.; Kennedy, L. J. Selective Liquid Phase Oxidation of Benzyl Alcohol Catalyzed by Copper Aluminate Nanostructures. J. Mol. Struct. 2015, 1079, 182–188. DOI: 10.1016/j.molstruc.2014.09.045.
  • Gawande, M. B.; Rathi, A.; Nogueira, I. D.; Ghumman, C.; Bundaleski, N.; Teodoro, O.; Branco, P. S. A Recyclable ferrite-Co Magnetic Nanocatalyst for the Oxidation of Alcohols to Carbonyl Compounds. ChemPlusChem 2012, 77, 865–871. DOI: 10.1002/cplu.201200081.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.