170
Views
1
CrossRef citations to date
0
Altmetric
Articles

Luminescent property of CaWO4:Eu3+ nanophosphors prepared by molten salt synthesis

, , &
Pages 647-652 | Received 12 May 2021, Accepted 28 Aug 2021, Published online: 24 Sep 2021

References

  • Xiong, S.; Liang, D.; Wu, H.; Lin, W.; Chen, J.; Zhang, B. Preparation, Characterization, Tribological and Lubrication Performances of Eu Doped CaWO4 Nanoparticle as Anti-Wear Additive in Water-Soluble Fluid for Steel Strip during Hot Rolling. Appl. Surf. Sci. 2021, 539, 148090. DOI: 10.1016/j.apsusc.2020.148090.
  • de Sousa, P. B.; Gouveia, A. F.; Sczancoski, J. C.; Nogueira, I. C.; Longo, E.; San-Miguel, M. A.; Cavalcante, L. S. Electronic Structure, Optical and Sonophotocatalytic Properties of Spindle-Like CaWO4 Microcrystals Synthesized by the Sonochemical Method. J. Alloys Compd. 2021, 855, 157377. DOI: 10.1016/j.jallcom.2020.157377.
  • Das, D.; Gupta, S. K.; Datrik, C. S.; Nandi, P.; Sudarshan, K. Role of Alkali Charge Compensation in the Luminescence of CaWO4:Nd3+ and SrWO4:Nd3+ Scheelites. New J. Chem. 2020, 44, 7300–7309. DOI: 10.1039/D0NJ00651C.
  • Meskine, S., et al. Optical Research; Study Findings from University of Belgrade Provide New Insights into Optical Research (Optical Properties CaWO4:Nd3+ Pmma Composite Layered Structures). Chemicals & Chemistry 2020, 6601, 258–271.
  • Pestereva, N. N.; Guseva, A. F.; Kuznetsov, D. K.; Selezneva, N. V.; Korona, D. V. Effect of Silicon, Vanadium, and Tungsten Oxide Additives on the Electrical Properties of Composites Based on CaWO4. Russ. J. Phys. Chem. 2020, 94, 2482–2487. DOI: 10.1134/S0036024420120213.
  • Shahedi, Zahra; Zare, Hakimeh; Sediqy, Abdulwares. Nanotechnology-Nanostructures; Study Results from Jackson State University Broaden Understanding of Nanostructures (Luminescence Properties of CaWO4 and CaWO4:Eu3+ Nanostructures Prepared at Low Temperature). Nanotechnology Weekly 2018, 898, 2810–2825.
  • Brik, Mikhail, G., et al. Alloys and Compounds; Findings in Alloys and Compounds Reported from Lanzhou University (Red-Emitting Enhancement by Inducing Lower Crystal Field Symmetry of Eu3+ Site in CaWO4:Eu3+ Phosphor for n-UV w-LEDs)[J]. J. Technol. Sci. 2018, 1820–1834.
  • Chen, Y.-Q.; Yang, G.-T.; Luo, J.-Y.; Yang, Y.-S.; Zeng, Q.-G.; Jeong, J. H. Surfactant Effect on Formation of CaWO4:Eu3+ Crystals with Distinguished Morphologies in Hydrothermal Ambient. J. Nanosci. Nanotechnol. 2016, 16, 3930–3934. DOI: 10.1166/jnn.2016.11894.
  • Cadieu, L.; Kopp, J. B.; Jumel, J.; et al. Materials Science; New Materials Science Study Findings Have Been Reported by Investigators at Xiamen University of Technology (Luminescent Properties of Red-Light-Emitting Phosphors CaWO4:Eu3+, Li+ for near UV LED. J. Technol. Sci. 2016, 568, 3453–3461.
  • Sora, Shin; Eun Hea, Jho. Microstructures; Data on Microstructures Described by Researchers at Research Institute (Surfactant-Assistant Solvothermal Synthesis of CaWO4:Eu3+ Phosphors and Luminescence). Technol. News Focus 2015, 309, 178–186.
  • Zhang, W.; He, F.; Xie, J.; Liu, X.; Fang, D.; Yang, H.; Luo, Z. Crystallization Mechanism and Properties of Glass Ceramics from Modified Molten Blast Furnace Slag. J. Non-Cryst. Solids 2018, 502, 164–171. DOI: 10.1016/j.jnoncrysol.2018.08.024.
  • Deng, L.; Zhang, X.; Zhang, M.; Jia, X. Effect of CaFz on Viscosity, Structure and Properties of CaO-Al2O3-MgO-SiO2 Slag Glass Ceramics. J. Non-Cryst. Solids 2018, 500, 310–316. DOI: 10.1016/j.jnoncrysol.2018.08.018.
  • Chen, J.; Yan, B.; Li, H.; Li, P.; Guo, H. Vitrification of Blast Furnace Slag and Fluorite Tailings for Giving Diopside-Fluorapatite Glass -Ceramics. Mater. Lett. 2018, 218, 309–312. DOI: 10.1016/j.matlet.2018.02.020.
  • Lis, S.; Elbanowski, M.; Mąkowska, B.; Hnatejko, Z. Photochemistry and Photophysics of Coordination Compounds: Lanthanides. Photochem. Photobiol. A 2002, 150, 233–247. DOI: 10.1016/S1010-6030(01)00637-2.
  • Anicete-Santos, M.; Picon, F. C.; Escote, M. T.; Leite, E. R.; Pizani, P. S.; Varela, J. A.; Longo, E. Room-Temperature Photoluminescence in Structurally Disordered SrWO4. Appl. Phys. Lett. 2006, 88, 211913. DOI: 10.1063/1.2207491.
  • Lou, X. M.; Chen, D. H. Synthesis Process and Luminescence Properties of Tm3+ in AWO 4 (a = Ca, Sr, Ba) Blue Phosphors. Mater. Lett. 2008, 62, 1681–1684. DOI: 10.1016/j.matlet.2007.09.066.
  • Treadaway, M. J.; Powell, R. C. Luminescence of Calcium Tungstate Crystals. J. Chem. Phys. 1974, 61, 4003–4011. DOI: 10.1063/1.1681693.
  • Tyminski, J. K.; Lawson, C. M.; Powell, R. C. Energy Transfer between Eu3+ Tions in LiNbO3, CaWO4, and EuxY.xP5O14 Crystals. J. Chem. Phys. 1982, 77, 4318–4325. DOI: 10.1063/1.444434.
  • Kimj, S.; Jeon, P. E.; Park, Y. H. W. Hight, Generation through Ulravile-Emitting Diode and White Eniting Phosphor. Appl. Phys. Lett. 2004, 85, 3696–3698.
  • Zhou, L.; Huang, J.; Yi, L.; Gong, M.; Shi, J. Luminescent Properties of BagGd (BO)3;Eu+ Phosphor for White LED Applica-Tions. Rare Earths 2009, 27, 54–57. DOI: 10.1016/S1002-0721(08)60190-8.
  • Haque, M. M.; Lee, H. I.; Kim, D. K. Luminescent Properties of Eu+ Activated Molybdate-Based Novel Red-Emiting Phosphors for LEDs. Alloys Compd. 2009, 481, 792–796. DOI: 10.1016/j.jallcom.2009.03.083.
  • Piao, X.; Machida, K.-i.; Horikawa, T.; Hanzawa, H.; Shimomura, Y.; Kijima, N. Preparation of CaAISiN Eu2+ Phosphors by the Self Propagating High-Temperature Synthesis and Their Luninescent Properties. Chem. Mater. 2007, 19, 4592–4599. DOI: 10.1021/cm070623c.
  • Pust, P.; Weiler, V.; Hecht, C.; Tücks, A.; Wochnik, A. S.; Henß, A.-K.; Wiechert, D.; Scheu, C.; Schmidt, P. J.; Schnick, W. Narow-Band Red Emiting Sr DiAl,Eu2+ as a Nexl-Generation LED-Phosphor Material D. Nat. Mater. 2014, 13, 891–896. DOI: 10.1038/nmat4012.
  • Ekmekci, M. K.; Ilhan, M.; Ege, A.; Ayvacikli, M. Microstructural and Radioluminescence Characteristics of Nd3+ Doped Columbite-Type SrNb2O6 Phosphor. J. Fluoresc. 2017, 27, 973–979. DOI: 10.1007/s10895-017-2032-3.
  • Ilhan, M.; Keskin, I. C. Analysis of Judd-Ofelt Parameters and Radioluminescence Results of SrNb2O6:Dy3+ Phosphors Synthesized via Molten Salt Method. Phys. Chem. Chem. Phys. 2020, 22, 19769–19778. DOI: 10.1039/d0cp02256j.
  • Zhao, Z.; Ma, J.; Xie, L.; Tian, H.; Zhou, J.; Hu, Y.; Huang, X.; Wu, P.; Dai, J.; Zhu, Z.; et al. Synthesis of CaWO4 Nanoparticles by a Molten Saltmethod. J. Am. Ceram. Soc. 2005, 88, 2622–2624. DOI: 10.1111/j.1551-2916.2005.00462.x.
  • Ke, Y.; Zhou, J.; Yi, X.; Sun, Y.; Shao, J.; You, S.; Wang, W.; Tang, Y.; Tu, C. Development of REE-Doped CaWO4 Single Crystals as Reference Materials for In Situ Microanalysis of Scheelite via LA-ICP-MS. J. Anal. At. Spectrom. 2020, 35, 886–895. DOI: 10.1039/D0JA00015A.
  • Xiaoxiao, Ye; Haitian, Zhao; Zhou, Wang; et al. Nanotechnology-Nanocrystals; Researchers at Ningbo University Release New Data on Nanocrystals (Synthesis and Luminescence Properties of Ho3+ and Er3+ Doped CaWO4 Nanocrystalline Powders Prepared by Self-Propagating Combustion Method). Nanotechnol. Weekly 2020, 1288, 2376–2387.
  • Lin, C.; Cong, W.; Fuqiang, Y.; Ping, C.; Songjun, W. Microstructure, Morphology, Spectral Characteristics and Photochemical Effects of Eu:CaWO4 Nanoparticles. Spectrosc. Spectr. Anal. 2011, 31, 3018–3021.
  • Li, X. F. Preparation and Fluorescence Properties of Rare Earth Doped Carbon Quantum Dots. University of Jinan, Engineering Technology, 2019, 23, 125–200. DOI: .
  • Wu, X. Effect of Particle Size and Heteroatom Doping on Fluorescence Emission of Carbon Quantum Dots. Nanjing Normal University, Nanotechnology Weekly, 2020, 23, 145–206.
  • Mou, Y.-R. Controllable Preparation and Fluorescence Properties of Rare Earth Doped Silica Microspheres. Southwest University of Science and Technology, Chemicals & Chemistry, 2017, 34, 245–281.
  • Wang, S. S. Preparation and Properties of Carbon Quantum Dots. Beijing University of Chemical Technology, Jenny Stanford Publishing, 2013, 12, 34–62.
  • Liu, J.; Yang, Z.; Yan, W.; Liu, H.; Yang, X. Fluorescence Imaging of Cancer Cells by One-Step Hydrothermal Synthesis of Carbon Quantum Dots. J. Qingdao Univ. (Eng. Technol. Ed.) 2014, 36, 87–92.
  • Zhou, S. P. Research Progress in the Synthesis of Fluorescent Materials by Molten Salt Method. Liaoning Chem. Ind. 2011, 40, 404–407.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.