201
Views
2
CrossRef citations to date
0
Altmetric
Articles

Influence of applied potential on tin content in electrodeposition of Zn–Sn alloy coatings and its effect on corrosion protection

ORCID Icon, , , , &
Pages 899-909 | Received 10 Jun 2021, Accepted 25 Nov 2021, Published online: 10 Jan 2022

References

  • Brenner, A. Electrodeposition of Alloys: Principles and Practice, 2nd ed. Academic Press, New York, 1963.
  • Antón, R. L.; Fdez-Gubieda, M. L.; Garcı́a-Arribas, A.; Herreros, J.; Insausti, M. Preparation and Characterisation of Cu-Co Heterogeneous Alloys by Potentiostatic Electrodeposition. Mater. Sci. Eng. A 2002, 335, 94–100. DOI: 10.1016/S0921-5093(01)01914-1.
  • Panagopoulos, C. N.; Papachristos, V. D.; Christoffersen, L. W. Lubricated Sliding Wear Behaviour of Ni-P-W Multilayered Alloy Coatings Produced by Pulse Plating. Thin Solid Films 2000, 366, 155–163. DOI: 10.1016/S0040-6090(00)00749-5.
  • Conde, A.; Arenas, M. A.; De Damborenea, J. J. Electrodeposition of Zn-Ni Coatings as Cd Replacement for Corrosion Protection of High Strength Steel. Corr. Sci. 2011, 53, 1489–1497. DOI: 10.1016/j.corsci.2011.01.021.
  • Knotková, D.; Bartoň, K. Effects of Acid-Deposition on Corrosion of Metals. Atmos. Environ. A. Gen. Top. 1992, 26, 3169–3177. DOI: 10.1016/0960-1686(92)90473-X.
  • Fratesi, R.; Roventi, G.; Giuliani, G.; Tomachuk, C. R. Zinc-Cobalt Alloy Electrodeposition from Chloride Baths. J. Appl. Electrochem. 1997, 27, 1088–1094. DOI: 10.1023/A:1018494828198.
  • Karahan, I. H.; Güder, H. S. Electrodeposition and Properties of Zn, Zn-Ni, Zn-Fe and Zn-Fe-Ni Alloys from Acidic Chloride-Sulphate Electrolytes. Trans. IMF 2009, 87, 155–158. DOI: 10.1179/174591909X438875.
  • Felloni, L.; Fratesi, R.; Quadrini, E.; Roventi, G. Electrodeposition of Zinc-Nickel Alloys from Chloride Solution. J. Appl. Electrochem. 1987, 17, 574–582. DOI: 10.1007/BF01084132.
  • Guaus, E.; Torrent-Burgués, J. Tin-Zinc Electrodeposition from Sulphate-Gluconate Baths. J. Electroanal. Chem. 2003, 549, 25–36. DOI: 10.1016/S0022-0728(03)00249-3.
  • Faid, H.; Mentar, L.; Khelladi, M. R.; Azizi, A. Deposition Potential Effect on Surface Properties of Zn-Ni Coatings. Surf. Eng. 2017, 33, 529–535. DOI: 10.1080/02670844.2017.1287836.
  • Ding, L.; Chen, C.; Dong, Y.; Cheng, J.; Niu, Y. Theory and Technology for Electroplating a Rose Golden Cu-Zn-Sn Alloy Using a Disodium Ethylenediamine Tetraacetate System. J. Appl. Electrochem. 2019, 49, 715–729. DOI: 10.1007/s10800-019-01316-z.
  • Rakitin, V. V.; Gapanovich, M. V.; Kolesnikova, A. M.; Sedlovets, D. M.; Bashkirov, S. A.; Hekkel, V. S.; Osakovich, Y. V.; Gremenok, V. F.; Novikov, G. F. The Influence of High-Temperature Annealing of Electrochemically Deposited Cu-Zn-Sn Layers on the Composition and Structure of Kesterite Films-Absorbing Layers of Solar Cells. Russ. Chem. Bull. 2019, 68, 1171–1177. DOI: 10.1007/s11172-019-2535-y.
  • Nayana, K. O.; Prashanth, S. A.; Venkatesha, T. V.; Pandurangappa, M. Effect of Additives on Nanocrystalline Bright Zn-Ni-Fe Alloy Electrodeposit Properties. Surf. Eng. 2019, 35, 1061–1069. DOI: 10.1080/02670844.2019.1588487.
  • Dubent, S.; De Petris-Wery, M.; Saurat, M.; Ayedi, H. F. Composition Control of Tin-Zinc Electrodeposits through Means of Experimental Strategies. Mater. Chem. Phys. 2007, 104, 146–152. DOI: 10.1016/j.matchemphys.2007.02.100.
  • Kazimierczak, H.; Ozga, P. Electrodeposition of Sn-Zn and Sn-Zn-Mo Layers from Citrate Solutions. Surf. Sci. 2013, 607, 33–38. DOI: 10.1016/j.susc.2012.08.010.
  • Blunden, S. J.; Killmeyer, A. J. Sn-Zn Alloy Electroplates Outperform Cadmium Deposits. Adv. Mater. Processes 1991, 140, 37–39.
  • Zanella, C.; Xing, S.; Deflorian, F. Effect of Electrodeposition Parameters on Chemical and Morphological Characteristics of Cu-Sn Coatings from a Methanesulfonic Acid Electrolyte. Surf. Coat. Technol. 2013, 236, 394–399. DOI: 10.1016/j.surfcoat.2013.10.020.
  • Dubent, S.; Mertens, M. L. A. D.; Saurat, M. Electrodeposition, Characterization and Corrosion Behaviour of Tin-20wt-% Zinc Coatings Electroplated from a Non-Cyanide Alkaline Bath. Mater. Chem. Phys. 2010, 120, 371–380. DOI: 10.1016/j.matchemphys.2009.11.017.
  • Guaus, E.; Torrent-Burgués, J. Tin-Zinc Electrodeposition from Sulphate-Tartrate Baths. J. Electroanal. Chem. 2005, 575, 301–309. DOI: 10.1016/j.jelechem.2004.09.022.
  • Miller, P. J.; Cuthberson, J. W. Tin-Zinc Alloy Plating. J. Met. Finish 1949, 47, 44–49.
  • Lowenheim, F. A.; Macintosh, R. M. The Development of Tin-Zinc Alloy Plating in the USA. J. Electrodep. Tech. Soc. 1951, 27, 115–128.
  • Fashu, S.; Gu, C. D.; Zhang, J. L.; Bai, W. Q.; Wang, X. L.; Tu, J. P. Electrodeposition and Characterization of Zn-Sn Alloy Coatings from a Deep Eutectic Solvent Based on Choline Chloride for Corrosion Protection. Surf. Interface Anal. 2015, 47, 403–412. DOI: 10.1002/sia.5728.
  • Fashu, S.; Khan, R.; Zulfiqar, S. Ternary Zn-Mn-Sn Alloy Electrodeposition from an Ionic Liquid Based on Choline Chloride. Trans. IMF 2017, 95, 217–225. DOI: 10.1080/00202967.2017.1306371.
  • Fashu, S.; Khan, R. Electrodeposition of Ternary Zn-Ni-Sn Alloys from an Ionic Liquid Based on Choline Chloride and Their Characterisation. Trans.IMF 2016, 94, 237–245. DOI: 10.1080/00202967.2016.1209920.
  • Schlesinger, M.; Paunovic, M. Modern Electroplating, 5th ed. John Wiley & Sons. Inc., New Jersey, 2010.
  • Taguchi, A. d S.; Bento, F. R.; Mascaro, L. H. Nucleation and Growth of Tin-Zinc Electrodeposits on a Polycrystalline Platinum Electrode in Tartaric Acid. J. Braz. Chem. Soc. 2008, 19, 727–733. DOI: 10.1590/S0103-50532008000400017.
  • Pereira, N. M.; Salomé, S.; Pereira, C. M.; Silva, A. F. Zn-Sn Electrodeposition from Deep Eutectic Solvents Containing EDTA, HEDTA, and Idranal VII. J. Appl. Electrochem. 2012, 42, 561–571. DOI: 10.1007/s10800-012-0431-3.
  • Hasan, F. A.; Hani, K. I.; Nagham, M. S.; Rawaa, A. A.; Luma, M. A.; Mark, J. W.; Karl, S. R. Effects of Additives on the Electrodeposition of Zn-Sn Alloys from Choline Chloride/Ethylene Glycol-Based Deep Eutectic Solvent. J. Electroanal. Chem. 2020, 874, 114517.
  • Cao, X.; Xu, L.; Wang, C.; Li, S.; Wu, D.; Shi, Y.; Liu, F.; Xue, X. Electrochemical Behavior and Electrodeposition of Sn Coating from Choline Chloride-Urea Deep Eutectic Solvents. Coatings 2020, 10, 1154. DOI: 10.3390/coatings10121154.
  • Elsherief, A. E. Effect of Cobalt, Temperature and Certain Impurities upon Cobalt Electrowinning from Sulfate Solutions. J. Appl. Electrochem. 2003, 33, 43–49. DOI: 10.1023/A:1022938824111.
  • Matsushima, J. T.; Trivinho-Strixino, F.; Pereira, E. C. Investigation of Cobalt Deposition Using the Electrochemical Quartz Crystal Microbalance. Electrochim. Acta 2006, 51, 1960–1966. DOI: 10.1016/j.electacta.2005.07.003.
  • Soto, A. B.; Arce, E. M.; Palomar-Pardavé, M.; González, I. Electrochemical Nucleation of Cobalt onto Glassy Carbon Electrode from Ammonium Chloride Solutions. Electrochim. Acta 1996, 41, 2647–2655. DOI: 10.1016/0013-4686(96)00088-6.
  • Jaya, S.; Prasada Rao, T.; Prabhakara Rao, G. Mono- and Multilayer Formation Studies of Cobalt on Glassy Carbon Electrode. Electrochim. Acta 1987, 32, 1073–1078. DOI: 10.1016/0013-4686(87)90035-1.
  • Hosseini, M. G.; Ashassi-Sorkhabi, H.; Ghiasvand, H. A. Y. Electrochemical Studies of Zn-Ni Alloy Coatings from Non-Cyanide Alkaline Bath Containing Tartrate as Complexing Agent. Surf. Coat. Technol. 2008, 202, 2897–2904. DOI: 10.1016/j.surfcoat.2007.10.022.
  • Cullity, B. D. Element of X-Ray Diffraction, Addison-Wesley, Reading, MA. 1978, 102.
  • Abou-Krisha, M. M.; Assaf, F. H.; Alduaij, O. K.; Eissa, A. A. Deposition Potential Influence on the Electrodeposition of Zn-Ni-Mn Alloy. Trans. Indian Inst. Met. 2017, 70, 31–40. DOI: 10.1007/s12666-016-0859-y.
  • Mallikarjuna, N. M.; Keshavayya, J.; Prasanna, B. M. Synthesis, Characterization, and anti-Corrosion Behavior of Novel Mono Azo Dyes Derived from 4,5,6,7-Tetrahydro-1,3-Benzothiazole for Mild Steel in Acid Solution. J. Bio. Tribo. Corros. 2020, 6, 1–17.
  • Tebbakh, S.; Mentar, L.; Messaoudi, Y.; Khelladi, M. R.; Belhadj, H.; Azizi, A. Effect of Cobalt Content on Electrodeposition and Properties of Co-Ni Alloy Thin Films, Inorg. Nano-Met. Chem. 2020, 1–7. DOI: 10.1080/24701556.2020.1852573.
  • Pech-Canul, M. A.; Ramanauskas, R.; Maldonado, L. An Electrochemical Investigation of Passive Layers Formed on Electrodeposited Zn and Zn-Alloy Coatings in Alkaline Solutions. Electrochim. Acta 1997, 42, 255–260. DOI: 10.1016/0013-4686(96)00152-1.
  • Short, N. R.; Zhou, S.; Dennis, J. K. Electrochemical Studies on the Corrosion of a Range of Zinc Alloy Coated Steel in Alkaline Solutions. Surf. Coat. Technol. 1996, 79, 218–224. DOI: 10.1016/0257-8972(95)02428-X.
  • Cousy, S.; Gorodylova, N.; Svoboda, L.; Zelenka, J. Influence of Synthesis Conditions over Simonkolleite/ZnO Precipitation. Chem. Pap. 2017, 71, 2325–2334. DOI: 10.1007/s11696-017-0226-4.
  • Gharahcheshmeh, M. H.; Sohi, M. H. Study of the Corrosion Behavior of Zinc and Zn-Co Alloy Electrodeposits Obtained from Alkaline Bath Using Direct Current. Mater. Chem. Phys. 2009, 117, 414–421. DOI: 10.1016/j.matchemphys.2009.06.009.
  • Ramanauskas, R.; Juškėnas, R.; Kaliničenko, A.; Garfias-Mesias, L. F. Microstructure and Corrosion Resistance of Electrodeposited Zinc Alloy Coatings. J. Solid State Electrochem. 2004, 8, 416–421. DOI: 10.1007/s10008-003-0444-2.
  • Fashu, S.; Gu, C. D.; Zhang, J. L.; Huang, M. L.; Wang, X. L.; Tu, J. P. Effect of EDTA and NH4Cl Additives on Electrodeposition of Zn-Ni Films from Choline Chloride Based Ionic Liquid. Trans. Nonferrous. Met. Soc. China 2015, 25, 2054–2064. DOI: 10.1016/S1003-6326(15)63815-8.
  • Banuprakash, G.; Prasanna, B. M.; Santhosh, B. M.; Guruprasad, A. M.; Malladi, R. S. Corrosion Inhibitive Capacity of Vanillin-Based Schiff Base for Steel in 1 M HCl. J. Fail. Anal. And Preven. 2021, 21, 89–96. DOI: 10.1007/s11668-020-01036-z.
  • Banuprakash, G.; Prasanna, B. M.; Hebbar, N.; Manjunatha, T. S. Inhibitive Capability of a Novel Schiff Base for Steel in 1 M HCl Media. J. Fail. Anal. And Preven. 2020, 20, 572–579. DOI: 10.1007/s11668-020-00865-2.
  • Rajendraprasad, S.; Ali, S.; Prasanna, B. M. Electrochemical Behavior of N1-(3-Methylphenyl) Piperidine-1,4-Dicarboxamide as a Corrosion Inhibitor for Soft-Cast Steel Carbon Steel in 1 M HCl. J. Fail. Anal. And Preven. 2020, 20, 235–241. DOI: 10.1007/s11668-020-00824-x.
  • Kherfi, A.; Madani, A.; Chalal, D.; Benidir, S. Improvement of the Protective Properties of the Nanocomposite polypyrrole-Zinc Oxide Coating on Mild Steel by Adding the Dispersant Sodium Hexametaphosphate. Synth. Met. 2021, 277, 116795. DOI: 10.1016/j.synthmet.2021.116795.
  • Hebbar, N.; Praveen, B. M.; Prasanna, B. M.; Vishwanath, P. Electrochemical and Adsorption Studies of 4-Chloro,8-(Trifluoromethyl) Quinoline (CTQ) for Mild Steel in Acidic Medium. J. Fail. Anal. And Preven. 2020, 20, 1516–1523. DOI: 10.1007/s11668-020-00944-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.