311
Views
0
CrossRef citations to date
0
Altmetric
Articles

Influence of solvents, reaction temperature, and aging time on the morphology of iron oxide nanoparticles

&
Pages 922-936 | Received 15 Jun 2021, Accepted 25 Nov 2021, Published online: 27 Jan 2022

References

  • Situ-Loewenstein, S. F.; Wickramasinghe, S.; Abenojar, E. C.; Erokwu, B. O.; Flask, C. A.; Lee, Z.; Samia, A. C. S. A Novel Synthetic Route for High-Index Faceted Iron Oxide Concave Nanocubes with High T2 Relaxivity for in Vivo MRI Applications. J. Mater. Sci. Mater. Med. 2018, 29, 58. DOI: 10.1007/s10856-018-6052-6.
  • Zhang, W.; Liu, L.; Chen, H.; Hu, K.; Delahunty, I.; Gao, S.; Xie, J. Surface Impact on Nanoparticle-Based Magnetic Resonance Imaging Contrast Agents. Theranostics 2018, 8, 2521–2548. DOI: 10.7150/thno.23789.
  • Zeng, L.; Ren, W.; Zheng, J.; Cui, P.; Wu, A. Ultrasmall Water-soluble Metal-iron Oxide Nanoparticles as T1-weighted Contrast Agents for Magnetic Resonance Imaging. Phys. Chem. Chem. Phys. 2012, 14, 2631–2636. DOI: 10.1039/C2CP23196D.
  • Casula, M. F.; Conca, E.; Bakaimi, I.; Sathya, A.; Materia, M. E.; Casu, A.; Falqui, A.; Sogne, E.; Pellegrino, T.; Kanaras, A. G. Manganese Doped-Iron Oxide Nanoparticle Clusters and Their Potential as Agents for Magnetic Resonance Imaging and Hyperthermia. Phys. Chem. Chem. Phys. 2016, 18, 16848–16855. DOI: 10.1039/C6CP02094A.
  • Cai, D.; Mataraza, J. M.; Qin, Z. H.; Huang, Z.; Huang, J.; Chiles, T. C.; Carnahan, D.; Kempa, K.; Ren, Z. Highly Efficient Molecular Delivery into Mammalian Cells Using Carbon Nanotube Spearing. Nat. Methods. 2005, 2, 449–−454. DOI: 10.1038/nmeth761.
  • Geng, Y.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Shape Effects of Filaments versus Spherical Particles in Flow and Drug Delivery. Nat. Nanotechnol. 2007, 2, 249–255. DOI: 10.1038/nnano.2007.70.
  • Guardia, P.; Corato, R. D.; Lartigue, L.; Wilhelm, C.; Espinosa, A.; Hernandez, M. G.; Gazeau, F.; Manna, L.; Pellegrino, T. Water-Soluble Iron Oxide Nanocubes with High Values of Specific Absorption Rate for Cancer Cell Hyperthermia Treatment. ACS Nano. 2012, 6, 3080–3091. DOI: 10.1021/nn2048137.
  • Kafrouni, L.; Savadogo, O. Recent Progress on Magnetic Nanoparticles for Magnetic Hyperthermia. Prog. Biomater. 2016, 5, 147–160. DOI: 10.1007/s40204-016-0054-6.
  • Lin, W. S.; Lin, H. M.; Chen, H. H.; Hwu, Y. K.; Chiou, Y. J. Shape Effects of Iron Nanowires on Hyperthermia Treatment. J. Nanomater. 2013, 2013, 1–6. DOI: 10.1155/2013/237439.
  • Ovejero, J. G.; Cabrera, D.; Carrey, J.; Valdivielso, T.; Salas, G.; Teran, F. J. Effects of Inter- and Intra-Aggregate Magnetic Dipolar Interactions on the Magnetic Heating Efficiency of Iron Oxide Nanoparticles. Phys. Chem. Chem. Phys. 2016, 18, 10954–10963. DOI: 10.1039/C6CP00468G.
  • Mohapatra, J.; Zeng, F.; Elkins, K.; Xing, M.; Ghimire, M.; Yoon, S.; Mishra, S. R.; Liu, J. P. Size-Dependent Magnetic and Inductive Heating Properties of Fe3O4 Nanoparticles: scaling Laws across the Superparamagnetic Size. Phys. Chem. Chem. Phys. 2018, 20, 12879–12887. DOI: 10.1039/C7CP08631H.
  • Polshettiwar, V.; Baruwati, B.; Varma, R. S. Self-Assembly of Metal Oxides into Three-Dimensional Nanostructures: Synthesis and Application in Catalysis. ACS Nano. 2009, 3, 728–736. DOI: 10.1021/nn800903p.
  • Li, L. L.; Yu, P.; Wang, X.; Yu, S. S.; Mathieu, J.; Yu, H. Q.; Alvarez, P. J. J. Enhanced Biofilm Penetration for Microbial Control by Polyvalent Phages Conjugated with Magnetic Colloidal Nanoparticle Clusters (CNCs). Environ. Sci. Nano 2017, 4, 1817–1826. DOI: 10.1039/C7EN00414A.
  • Montferrand, C. D.; Hu, L.; Milosevic, I.; Russier, V.; Bonnin, D.; Motte, L.; Brioude, A.; Lalatonne, Y. Iron Oxide Nanoparticles with Sizes, Shapes and Compositions Resulting in Different Magnetization Signatures as Potential Labels for Multiparametric Detection. Acta Biomater. 2013, 9, 6150–6157. DOI: 10.1016/j.actbio.2012.11.025.
  • Sharrock, M. P. Recent Advances in Metal Particulate Recording Media: Toward the Ultimate Particle. IEEE Trans. Magn. 2000, 36, 2420–2425. DOI: 10.1109/20.908453.
  • Sharrock, M. P.; Bodnar, R. E. Magnetic Materials for Recording: An Overview with Special Emphasis on Particles (Invited). J. Appl. Phys. 1985, 57, 3919–3924. DOI: 10.1063/1.334917.
  • Seigler, M. A.; Mack, A. M.; Subramanian, K.; Pust, L. Exchange Tab Readback Transducer Using Reactive Ion Etching to Define the Trackwidth. J. Appl. Phys. 2002, 91, 7288–7290. DOI: 10.1063/1.1452680.
  • Mao, S.; Gao, Z.; Xi, H.; Kolbo, P.; Plumer, M.; Wang, L.; Goyal, A.; Jin, I.; Chen, J.; Hou, C. Spin-Valve Heads with Self- Stabilized Free Layer by Antiferromagnet. IEEE Trans. Magn. 2002, 38, 26–31. DOI: 10.1109/TMAG.2002.988906.
  • Liu, Z.; Dan, Y.; Jinjun, Q.; Wu, Y. Magnetic Force Microscopy Using Focused Ion Beam Sharpened Tip with Deposited Antiferro- Ferromagnetic Multiple Layers. J. Appl. Phys. 2002, 91, 8843–8845. DOI: 10.1063/1.1456056.
  • Shavel, A.; Liz-Marzán, L. M. Shape Control of Iron Oxide Nanoparticles. Phys. Chem. Chem. Phys. 2009, 11, 3762–3766. DOI: 10.1039/B822733K.
  • Qiao, L.; Fu, Z.; Li, J.; Ghosen, J.; Zeng, M.; Stebbins, J.; Prasad, P. N.; Swihart, M. T. Standardizing Size- and Shape-Controlled Synthesis of Monodisperse Magnetite (Fe3O4) Nanocrystals by Identifying and Exploiting Effects of Organic Impurities. ACS Nano. 2017, 11, 6370–6381. DOI: 10.1021/acsnano.7b02752.
  • Zhou, Z.; Zhu, X.; Wu, D.; Chen, Q.; Huang, D.; Sun, C.; Xin, J.; Ni, K.; Gao, J. Anisotropic Shaped Iron Oxide Nanostructures: Controlled Synthesis and Proton Relaxation Shortening Effects. Chem. Mater. 2015, 27, 3505–3515. DOI: 10.1021/acs.chemmater.5b00944.
  • Cotin, G.; Kiefer, C.; Perton, F.; Ihiawakrim, D.; Andujar, C. B.; Moldovan, S.; Lefevre, C.; Ersen, O.; Pichon, B.; Mertz, D.; Colin, S. B. Unravelling the Thermal Decomposition Parameters for the Synthesis of Anisotropic Iron Oxide Nanoparticles. Nanomaterials 2018, 8, 881. DOI: 10.3390/nano8110881.
  • Boucher, M. B.; Goergen, S.; Yi, N.; Flytzani-Stephanopoulos, M. ‘Shape Effects’ in Metal Oxide Supported Nanoscale Gold Catalysts. Phys. Chem. Chem. Phys. 2011, 13, 2517–2527. DOI: 10.1039/C0CP02009E.
  • Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals. Nat. Mater. 2004, 3, 891–895. DOI: 10.1038/nmat1251.
  • Sun, S.; Zeng, H. Size-Controlled Synthesis of Magnetite Nanoparticles. J. Am. Chem. Soc. 2002, 124, 8204–8205. DOI: 10.1021/ja026501x.
  • Kim, D.; Lee, N.; Park, M.; Kim, B. H.; An, K.; Hyeon, T. Synthesis of Uniform Ferrimagnetic Magnetite Nanocubes. J. Am. Chem. Soc. 2009, 131, 454–455. DOI: 10.1021/ja8086906.
  • Kwon, S. G.; Piao, Y.; Park, J.; Angappane, S.; Jo, Y.; Hwang, N. M.; Park, J. G.; Hyeon, T. Kinetics of Monodisperse Iron Oxide Nanocrystal Formation by “Heating-Up” process. J. Am. Chem. Soc. 2007, 129, 12571–12584. DOI: 10.1021/ja074633q.
  • Bronstein, L. M.; Atkinson, J. E.; Malyutin, A. G.; Kidwai, F.; Stein, B. D.; Morgan, D. G.; Perry, J. M.; Karty, J. A. Nanoparticles by Decomposition of Long Chain Iron Carboxylates: From Spheres to Stars and Cubes. Langmuir 2011, 27, 3044–3050. DOI: 10.1021/la104686d.
  • Feld, A.; Weimer, A.; Kornowski, A.; Winckelmans, N.; Merk, J. P.; Kloust, H.; Zierold, R.; Schmidtke, C.; Schotten, T.; Riedner, M.; et al. Chemistry of Shape-Controlled Iron Oxide Nanocrystal Formation. ACS Nano. 2019, 13, 152–162. DOI: 10.1021/acsnano.8b05032.
  • Bronstein, L. M.; Huang, X.; Retrum, J.; Schmucker, A.; Pink, M.; Stein, B. D.; Dragnea, B. Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation. Chem. Mater. 2007, 19, 3624–3632. [Database] DOI: 10.1021/cm062948j.
  • Kovalenko, M. V.; Bodnarchuk, M. I.; Lechner, R. T.; Hesser, G.; Schäffler, F.; Heiss, W. Fatty Acid Salts as Stabilizers in Size- and Shape-Controlled Nanocrystal Synthesis : The Case of Inverse Spinel Iron oxide. J. Am. Chem. Soc. 2007, 129, 6352–6353. DOI: 10.1021/ja0692478.
  • Zhao, Z.; Zhou, Z.; Bao, J.; Wang, Z.; Hu, J.; Chi, X.; Ni, K.; Wang, R.; Chen, X.; Chen, Z.; Gao, J. Octapod Iron Oxide Nanoparticles as High-Performance T2 Contrast Agents for Magnetic Resonance Imaging. Nat. Commun. 2013, 4, 2266. DOI: 10.1038/ncomms3266.
  • Tao, A. R.; Habas, S.; Yang, P. Shape Control of Colloidal Metal Nanocrystals. Small 2008, 4, 310–325. DOI: 10.1002/smll.200701295.
  • Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chem. Int. Ed. Engl. 2009, 48, 60–103. DOI: 10.1002/anie.200802248.
  • Gilroy, K. D.; Yang, X.; Xie, S.; Zhao, M.; Qin, D.; Xia, Y. Shape-Controlled Synthesis of Colloidal Metal Nanocrystals by Replicating the Surface Atomic Structure on the Seed. Adv. Mater. 2018, 30, 1706312. DOI: 10.1002/adma.201706312.
  • Sui, Y. C.; Zhao, Y.; Daniil, M.; Li, X. Z.; Sellmyer, D. J. FePt Clusters Synthesized by Thermal Pyrolysis of Fe and Pt Compounds in an Organic Solvent. J. Appl. Phys. 2006, 99, 08G704. DOI: 10.1063/1.2158699.
  • Zitoun, D.; Pinna, N.; Frolet, N.; Belin, C. Single Crystal Manganese Oxide Multipods by Oriented Attachment. J. Am. Chem. Soc. 2005, 127, 15034–15035. DOI: 10.1021/ja0555926.
  • Ely, T. O.; Centurion, D. P.; Kumar, A.; Guo, W.; Knowles, W. V.; Asokan, S. Manganese (II) Oxide Nanohexapods: Insight into Controlling the Form of Nanocrystals. Chem. Mater. 2006, 18, 1821–1829. DOI: 10.1021/cm052492q.
  • Andelman, T.; Gong, Y.; Polking, M.; Yin, M.; Kuskovsky, I.; Neumark, G.; O'Brien, S. Morphological Control and Photoluminescence of Zinc Oxide Nanocrystals. J. Phys. Chem. B. 2005, 109, 14314−14318. DOI: 10.1021/jp050540o.
  • Al-Salim, N.; Young, A. G.; Tilley, R. D.; McQuillan, A. J.; Xia, J. Synthesis of CdSeS Nanocrystals in Coordinating and Noncoordinating Solvents: Solvent’s Role in Evolution of the Optical and Structural Properties. Chem. Mater. 2007, 19, 5185–5193. DOI: 10.1021/cm070818k.
  • Hou, Y.; Xu, Z.; Sun, S. Controlled Synthesis and Chemical Conversions of FeO Nanoparticles. Angew. Chem. Int. Ed. Engl. 2007, 46, 6329–6332. DOI: 10.1002/anie.200701694.
  • Zhang, L.; Wu, J.; Liao, H.; Hou, Y.; Gao, S. Octahedral Fe3O4 Nanoparticles and Their Assembled Structures. Chem. Commun. 2009, 4378–4380. DOI: 10.1039/b906636e.
  • Tzitzios, V.; Niarchos, D.; Gjoka, M.; Boukos, N.; Petridis, D. Synthesis and Characterization of 3D CoPt Nanostructures. J. Am. Chem. Soc. 2005, 127, 13756–13757. DOI: 10.1021/ja053044m.
  • Guo, H.; Chen, Y.; Ping, H.; Wang, L.; Peng, D. L. One-Pot Synthesis of Hexagonal and Triangular Nickel–Copper Alloy Nanoplates and Their Magnetic and Catalytic Properties. J. Mater. Chem. 2012, 22, 8336. DOI: 10.1039/c2jm16095a.
  • Lacroix, L. M.; Gatel, C.; Arenal, R.; Garcia, C.; Lachaize, S.; Blon, T.; Warot-Fonrose, B.; Snoeck, E.; Chaudret, B.; Viau, G. Tuning Complex Shapes in Platinum Nanoparticles: From Cubic Dendrites to Fivefold Stars. Angew. Chem. Int. Ed. Engl. 2012, 51, 4690–4694. DOI: 10.1002/anie.201107425.
  • Pazos-Pérez, N.; Baranov, D.; Irsen, S.; Hilgendorff, M.; Liz-Marzán, L. M.; Giersig, M. Synthesis of Flexible, Ultrathin Gold Nanowires in Organic Media. Langmuir 2008, 24, 9855–9860. DOI: 10.1021/la801675d.
  • Tringides, M. C. Surface Diffusion: Atomistic and Collective Processes; Plenum Press: New York, London, 1997; p 24. DOI: 10.1007/978-1-4899-0262-7.
  • Xia, Y.; Gilroy, K. D.; Peng, H. C.; Xia, X. Seed Mediated Growth of Colloidal Metal Nanocrystals. Angew. Chem., Int. Ed. 2016, 55, 2. DOI: 10.1002/anie.201604731.
  • Mehl, H.; Biham, O.; Furman, I.; Karimi, M. Models for Adatom Diffusion on Fcc (001) Metal Surfaces. Phys. Rev. B. 1999, 60, 2106–2116. DOI: DOI: 10.1103/PhysRevB.60.2106.
  • De-Miguel, J. J.; Miranda, R. Atomic Aspects in the Epitaxial Growth of Metallic Superlattices and Nanostructures. J. Phys. Condens. Matter 2002, 14, R1063. DOI: 10.1088/0953-8984/14/43/201.
  • Liu, S. J.; Huang, H.; Woo, C. H. Schwoebel-Ehrlich Barrier: From Two to Three Dimensions. Appl. Phys. Lett. 2002, 80, 3295–3297. DOI: 10.1063/1.1475774.
  • Xia, X.; Xie, S.; Liu, M.; Peng, H. C.; Lu, N.; Wang, J.; Kim, M. J.; Xia, Y. On the Role of Surface Diffusion in Determining the Shape or Morphology of Noble-Metal Nanocrystals. Proc. Natl. Acad. Sci. USA. 2013, 110, 6669–6673. DOI: 10.1073/pnas.1222109110.
  • Wang, X.; Choi, S.; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M.; Liu, J.; Xie, Z.; Herron, J. A.; et al. Palladium-platinum Core-shell Icosahedra with Substantially Enhanced Activity and Durability Towards Oxygen Reduction. Nat. Commun. 2015, 6, 7594. DOI: 10.1038/ncomms8594.
  • Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M.; Liu, J.; Choi, S.; Park, J.; Herron, J. A.; Xie, Z.; et al. NANOCATALYSTS. Platinum-based Nanocages with Subnanometer-thick Walls and Well-defined, Controllable Facets. Science 2015, 349, 412–416. DOI: 10.1126/science.aab0801.
  • Xia, X.; Choi, S.; Herron, J. A.; Lu, N.; Scaranto, J.; Peng, H. C.; Wang, J.; Mavrikakis, M.; Kim, M. J.; Xia, Y. Facile Synthesis of Palladium Right Bipyramids and Their Use as Seeds for Overgrowth and as Catalysts for Formic Acid Oxidation. J. Am. Chem. Soc. 2013, 135, 15706–15709. DOI: 10.1021/ja408018j.
  • Fichthorn, K. A.; Balankura, T.; Qi, X. Multi-Scale Theory and Simulation of Shape-Selective Nanocrystal Growth. CrystEngComm 2016, 18, 5410–5417. DOI: 10.1039/C6CE01012A.
  • Xie, S.; Peng, H. C.; Lu, N.; Wang, J.; Kim, M. J.; Xie, Z.; Xia, Y. Confining the Nucleation and Overgrowth of Rh to the {111} Facets of Pd Nanocrystal Seeds: The Roles of Capping Agent and Surface Diffusion. J. Am. Chem. Soc. 2013, 135, 16658–16667. DOI: 10.1021/ja408768e.
  • Narnaware, P. K.; Ravikumar, C. Mechanistic Insights into the Formation and Growth of Anisotropic-Shaped WüStite − Spinel Core − Shell Iron Oxide Nanoparticles in a Coordinating Solvent. J. Phys. Chem. C. 2020, 124, 25010–25027. DOI: 10.1021/acs.jpcc.0c05606.
  • Weiner, R. G.; DeSantis, C. J.; Cardoso, M. B. T.; Skrabalak, S. E. Diffusion and Seed Shape: Intertwined Parameters in the Synthesis of Branched Metal Nanostructures. ACS Nano. 2014, 8, 8625–8635. DOI: 10.1021/nn5034345.
  • Xia, X.; Cosme, L. F.; Tao, J.; Peng, H. C.; Niu, G.; Zhu, Y.; Xia, Y. Facile Synthesis of Iridium Nanocrystals with Well-Controlled Facets Using Seed-Mediated Growth. J. Am. Chem. Soc. 2014, 136, 10878–10881. DOI: 10.1021/ja505716v.
  • Qi, X.; Balankura, T.; Zhou, Y.; Fichthorn, K. A. How Structure-Directing Agents Control Nanocrystal Shape: Polyvinylpyrrolidone-Mediated Growth of Ag Nanocubes. Nano Lett. 2015, 15, 7711–7717. DOI: 10.1021/acs.nanolett.5b04204.
  • Bao, N.; Shen, L.; An, L.; Padhan, P.; Turner, C. H.; Gupta, A. Formation Mechanism and Shape Control of Monodisperse Magnetic CoFe2O4 Nanocrystals. Chem. Mater. 2009, 21, 3458–3468. DOI: 10.1021/cm901033m.
  • Hai, H. T.; Yang, H. T.; Kura, H.; Hasegawa, D.; Ogata, Y.; Takahashi, M.; Ogawa, T. Size Control and Characterization of Wustite (Core)/Spinel (Shell) Nanocubes Obtained by Decomposition of Iron Oleate Complex. J. Colloid Interface Sci. 2010, 346, 37–42. DOI: 10.1016/j.jcis.2010.02.025.
  • Lynch, J.; Zhuang, J.; Wang, T.; Lamontagne, D.; Wu, H.; Cao, Y. C. Gas-Bubble Effects on the Formation of Colloidal Iron Oxide Nanocrystals. J. Am. Chem. Soc. 2011, 133, 12664–12674. DOI: 10.1021/ja2032597.
  • Macher, T.; Totenhagen, J.; Sherwood, J.; Qin, Y.; Gurler, D.; Bolding, M. S.; Bao, Y. Ultrathin Iron Oxide Nanowhiskers as Positive Contrast Agents for Magnetic Resonance Imaging. Adv. Funct. Mater. 2015, 25, 490–494. DOI: 10.1002/adfm.201403436.
  • Shima, P. D.; Philip, J. Role of Thermal Conductivity of Dispersed Nanoparticles on Heat Transfer Properties of Nanofluid. Ind. Eng. Chem. Res. 2014, 53, 980–988. DOI: 10.1021/ie403086g.
  • Casula, M. F.; Jun, Y. W.; Zaziski, D. J.; Chan, E. M.; Corrias, A.; Alivisatos, A. P. The Concept of Delayed Nucleation in Nanocrystal Growth Demonstrated for the Case of Iron Oxide Nanodisks. J. Am. Chem. Soc. 2006, 128, 1675–1682. DOI: 10.1021/ja056139x.
  • Pichon, B. P.; Gerber, O.; Lefevre, C.; Florea, I.; Fleutot, S.; Baaziz, W.; Pauly, M.; Ohlmann, M.; Ulhaq, C.; Ersen, O.; et al. Microstructural and Magnetic Investigations of Wüstite-Spinel Core-Shell Cubic-Shaped Nanoparticles. Chem. Mater. 2011, 23, 2886–2900. DOI: 10.1021/cm2003319.
  • Mourdikoudis, S.; Liz-Marzán, L. M. Oleylamine in Nanoparticle Synthesis. Chem. Mater. 2013, 25, 1465–1476. DOI: 10.1021/cm4000476.
  • Ringe, E.; Van Duyne, R. P.; Marks, L. D. Wulff Construction for Alloy Nanoparticles. Nano Lett. 2011, 11, 3399–3403. DOI: 10.1021/nl2018146.
  • Jun, Y. W.; Lee, J. H.; Choi, J. S.; Cheon, J. Symmetry-Controlled Colloidal Nanocrystals: Nonhydrolytic Chemical Synthesis and Shape Determining Parameters. J. Phys. Chem. B. 2005, 109, 14795–14806. DOI: 10.1021/jp052257v.
  • Davies, M. J.; Parker, S. C.; Watson, G. W. Atomistic Simulation of the Surface Structure of Spinel. J. Mater. Chem. 1994, 4, 813–816. DOI: 10.1039/jm9940400813.
  • Wandelt, K. Surface and Interface Science, Concepts and Methods; Wiley-VCH: Weinheim, Germany, 2012; p 1.
  • Bortolani, V.; March, N. H.; Tosi, M. P. Interaction of Atoms and Molecules with Solid Surfaces. In Physics of Solids and Liquids; Springer: Berlin, Germany, 1990. DOI: 10.1007/978-1-4684-8777-0.
  • Macher, T.; Sherwood, J.; Xu, Y.; Lee, M.; Dennis, G.; Qin, Y.; Daly, D.; Swatloski, R. P.; Ba, Y. Scalable Production of Iron Oxide Nanowhiskers. J. Nanomater. 2015, 376579, 1–8. DOI: 10.1155/2015/376579.
  • Park, J.; Kang, E.; Son, S. U.; Park, H. M.; Lee, M. K.; Kim, J.; Kim, K. W.; Noh, H. J.; Park, J. H.; Bae, C. J.; et al. Monodisperse Nanoparticles of Ni and NiO: Synthesis, Characterization, Self Assembled Superlattices, and Catalytic Applications in the Suzuki Coupling Reaction. Adv. Mater. 2005, 17, 429–434. DOI: 10.1002/adma.200400611.
  • Seo, W. S.; Jo, H. H.; Lee, K.; Kim, B.; Oh, S. J.; Park, J. T. Size-dependent Magnetic Properties of Colloidal Mn(3)O(4) and MnO Nanoparticles. Angew. Chem. Int. Ed. Engl. 2004, 43, 1115–1117. DOI: 10.1002/anie.200352400.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.