267
Views
3
CrossRef citations to date
0
Altmetric
Articles

Influence of annealing temperature on microstructural and magnetic properties of Fe2O3 nanoparticles synthesized via sol-gel method

ORCID Icon &
Pages 937-950 | Received 06 Jul 2021, Accepted 25 Nov 2021, Published online: 10 Jan 2022

References

  • Vichery, C.; Maurin, I.; Bonville, P.; Boilot, J. P.; Gacoin, T. Influence of Protected Annealing on the Magnetic Properties of γ‑Fe2O3 Nanoparticle. J. Phys. Chem. C. 2012, 116, 16311–16318. −. DOI: 10.1021/jp305069a.
  • Sato, I.; Umemura, M.; Mitsudo, K.; Fukumura, H.; Kim, J. H.; Hoshino, Y.; Nakashima, H.; Kioi, M.; Nakakaji, R.; Sato, M.; et al. Simultaneous Hyperthermia-Chemotherapy with Controlled Drug Delivery Using Single-Drug Nanoparticles. Sci. Rep. 2016, 6, 24629. DOI: 10.1038/srep24629.
  • Singh, N.; Nayak, J.; Sahoo, S. K.; Kumar, R. Glutathione Conjugated Superparamagnetic Fe3O4-Au core shell nanoparticles for pH controlled release of DOX. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 100, 453–465. DOI: 10.1016/j.msec.2019.03.031.
  • Sun, X.; Gamal, M.; Nold, P.; Said, A.; Chakraborty, I.; Pelaz, B.; Schmied, F.; Puckler, K. V.; Figiel, J.; Zhao, Y.; et al. Tracking Stem Cells and Macrophages with Gold and Iron Oxide Nanoparticles: The Choice of the Best Suited Particles. Appl. Mater. Today 2019, 15, 267–279. DOI: 10.1016/j.apmt.2018.12.006.
  • Kubíčková, L.; Brázda, P.; Veverka, M.; Kaman, O.; Herynek, V.; Vosmanská, M.; Dvořák, P.; Bernášek, K.; Kohout, J. Nanomagnets for Ultra-High Field MRI: Magnetic Properties and Transverse Relaxivity of Silica-Coated ε-Fe2O3. J. Magn. Magn. Mater. 2019, 480, 154–163. DOI: 10.1016/j.jmmm.2019.02.067.
  • Medina, O. E.; Gallego, J.; Madri, D. A.; Cortes, F. B.; Franco, C. A. Optimization of the Load of Transition Metal Oxides (Fe2O3, Co3O4, NiO and/or PdO) onto CeO2 Nanoparticles in Catalytic Steam Decomposition of n-C7 Asphaltenes at Low Temperatures. Nanomater 2019, 9, 401. doi:10.3390/nano9030401. DOI: 10.3390/nano9030401.
  • Saha, P.; Mukherjee, P. S.; Mandal, K. Rheological Response of Magnetic Fluid Containing Fe3O4 Nano Structures. J. Magn. Magn. Mater. 2019, 484, 324–328. DOI: 10.1016/j.jmmm.2019.04.055.
  • Hjiri, M.; Aida, M. S.; Neri, G. NO2 Selective Sensor Based on α-Fe2O3 Nanoparticles Synthesized via Hydrothermal Technique. Sensors 2019, 19, 167. DOI: 10.3390/s19010167.
  • Yao, Y.; Metwalli, E.; Su, B.; Korstgens, V.; Gonzalez, D. M.; Miasnikova, A.; Laschewsky, A.; Opel, M.; Santoro, G.; Roth, S. V.; Buschbaum, P. M. Arrangement of Maghemite Nanoparticles via Wet Chemical Self-Assembly in PS-b-PNIPAM Diblock Copolymer Films. ACS Appl. Mater. Interfaces 2015, 7, 13080–13091. DOI: 10.1021/acsami.5b03308.
  • Subha, V.; Divya, K.; Gayathri, S.; Mohan, E. J.; Keerthanaa, N.; Vinitha, M.; Kirubanandan, S.; Renganathan, S. Applications of Iron Oxide Nano Composite in Waste Water Treatment–Dye Decolourisation and anti‒ Microbial Activity. MOJ Drug Des. Develop Ther. 2018, 2, 178–184. ‒
  • Magro, M.; Baratella, D.; Molinari, S.; Venerando, A.; Salviulo, G.; Chemello, G.; Olivotto, I.; Zoppellaro, G.; Ugolotti, J.; Aparicio, C.; et al. Biologically Safe Colloidal Suspensions of Naked Iron Oxide Nanoparticles for in Situ Antibiotic Suppression. Colloids Surf. B Biointerfaces 2019, 181, 102–111. DOI: 10.1016/j.colsurfb.2019.05.036.
  • Vargas, J. M.; Lima, J. E.; Socolovsky, L. M.; Knobel, M.; Zanchet, D.; Zysler, R. D. Annealing Effects on 5 nm Iron Oxide Nanoparticles. J. Nanosci. Nanotechnol. 2007, 7, 3313–3317. DOI: 10.1166/jnn.2007.688.
  • Kayani, Z. N.; Arshad, S.; Riaz, S.; Naseem, S. Synthesis of Iron Oxide Nanoparticles by Sol–Gel Technique and Their Characterization. IEEE Trans. Magn. 2014, 50, 1–4. DOI: 10.1109/TMAG.2014.2313763.
  • Dolores, R.; Raquel, S.; Adianez, G. L. Sonochemical Synthesis of Iron Oxide Nanoparticles Loaded with Folate and Cisplatin: Effect of Ultrasonic Frequency. Ultrason. Sonochem. 2015, 23, 391–398. DOI: 10.1016/j.ultsonch.2014.08.005.
  • Sun, Y.; Guo, G.; Yang, B.; Cai, W.; Tian, Y.; He, M.; Liu, Y. One-Step Solution Synthesis of Fe2O3 Nanoparticles at Low Temperature. Physica B. 2011, 406, 1013–1016. DOI: 10.1016/j.physb.2010.12.050.
  • Kopanja, L.; Milosevic, I.; Panjan, M.; Damnjanovic, V.; Tadic, M. Sol–Gel Combustion Synthesis, Particle Shape Analysis and Magnetic Properties of Hematite (α-Fe2O3) Nanoparticles Embedded in an Amorphous Silica Matrix. Appl. Surf. Sci. 2016, 362, 380–386. DOI: 10.1016/j.apsusc.2015.11.238.
  • Banerjee, I.; Khollam, Y. B.; Balasubramanian, C.; Pasricha, R.; Bakare, P. P.; Patil, K. R.; Das, A. K.; Bhoraskar, S. V. Preparation of γ-Fe2O3 Nanoparticles Using DC Thermal Arc-Plasma Route, Their Characterization and Magnetic Properties. Scr. Mater. 2006, 54, 1235–1240. DOI: 10.1016/j.scriptamat.2005.12.029.
  • Jonkkari, I.; Sorvali, M.; Huhtinen, H.; Sarlin, E.; Salminen, T.; Haapanen, J.; Makela, J. M.; Vuorinen, J. Characterization of Bidisperse Magnetorheological Fluids Utilizing Maghemite (γ-Fe2O3) Nanoparticles Synthetized by Flame Spray Pyrolysis. Smart Mater. Struct. 2017, 26, 095004. DOI: 10.1088/1361-665X/aa7f7d.
  • Ozel, F.; Kockar, H.; Karaagac, O. Growth of Iron Oxide Nanoparticles by Hydrothermal Process: Effect of Reaction Parameters on the Nanoparticle Size. J. Supercond. Nov. Magn. 2015, 28, 823–829. DOI: 10.1007/s10948-014-2707-9.
  • Xu, X. N.; Wolfus, Y.; Shaulov, A.; Yeshurun, Y.; Felner, I.; Nowik, I.; Koltypin, Y.; Gedanken, A. Annealing Study of Fe2O3 Nanoparticles: Magnetic Size Effects and Phase Transformations. Appl. Phys. 2002, 91, 4611–4616. DOI: 10.1063/1.1457544.
  • Anupama, A. V.; Keune, W.; Sahoo, B. Thermally Induced Phase Transformation in Multi-Phase Iron Oxide Nanoparticles on Vacuum Annealing. J. Magn. Magn. Mater. 2017, 439, 156–166. DOI: 10.1016/j.jmmm.2017.04.094.
  • Kin, M.; Kura, H.; Tanaka, M.; Hayashi, Y.; Hasaegawa, J.; Ogawa, T. Improvement of Saturation Magnetization of Fe Nanoparticles by Post-Annealing in a Hydrogen Gas Atmosphere. J. Appl. Phys. 2015, 117, 17E714. DOI: 10.1063/1.4919050.
  • Thimmiah, B. R.; Nallathambi, G. Synthesis of α-Fe2O3 Nanoparticles and Analyzing the Effect of Annealing Temperature on Its Properties. Mater. Sci. Poland 2020, 38, 116–121. DOI: 10.2478/msp-2020-0005.
  • Shaw, S. K.; Biswas, A.; Gangwar, A.; Maiti, P.; Prajapat, C. L.; Meena, S. S.; Prasad, N. K. Synthesis of Exchange Coupled Nanoflowers for Efficient Magnetic Hyperthermia. J. Magn. Magn. Mater. 2019, 484, 437–444. DOI: 10.1016/j.jmmm.2019.04.056.
  • Shaw, S. K.; Kailashiya, J.; Gangwar, A.; Alla, S. K.; Gupta, S. K.; C.L. Prajapat, C. L.; Meena, S. S.; Dash, D.; Maiti, P. h.; Prasad, N. K. γ-Fe2O3 Nanoflowers as Efficient Magnetic Hyperthermia and Photothermal Agent. Appl. Surf. Sci. 2021, 560, 150025. DOI: 10.1016/j.apsusc.2021.150025.
  • Nadar, A.; Banerjee, A. M.; Pai, M. R.; Meena, S. S.; Pai, R. V.; Tewari, R.; Yusuf, S. M.; Tripathi, A. K.; Bharadwaj, S. R. Nanostructured Fe2O3 Dispersed on SiO2 as Catalyst for High Temperature Sulfuric Acid Decomposition—Structural and Morphological Modifications on Catalytic Use and Relevance of Fe2O3-SiO2 Interactions. Appl. Catal. B, Environ. 2017, 217, 154–168. DOI: 10.1016/j.apcatb.2017.05.045.
  • Nadar, A.; Banerjee, A. M.; Pai, M. R.; Pai, R. V.; Meena, S. S.; Tewari, R.; Tripathi, A. K. Catalytic Properties of Dispersed Iron Oxides Fe2O3/MO2 (M ¼ Zr, Ce, Ti and Si) for Sulfuric Acid Decomposition Reaction: Role of Support. Int. J. Hydrogen Energy 2018, 43, 37–52. DOI: 10.1016/j.ijhydene.2017.10.163.
  • Nadar, A.; Banerjee, A. M.; Pai, M. R.; Meena, S. S.; Patra, A. K.; Sastry, P. U.; Singh, R.; Singh, M. K.; Tripathi, A. K. Immobilization of Crystalline Fe2O3 Nanoparticles over SiO2 for Creating an Active and Stable Catalyst: A Demand for High Temperature Sulfuric Acid Decomposition. Appl. Catal, B. 2021, 283, 119610. DOI: 10.1016/j.apcatb.2020.119610.
  • Komal, K.; Kaur, H.; Kainth, M.; Meena, S. S.; Kang, T. S. Sustainable Preparation of Sunlight Active a-Fe2O3 Nanoparticles Using Iron Containing Ionic Liquids for Photocatalytic Applications. RSC Adv. 2019, 9, 41803–41810. DOI: 10.1039/C9RA09678G.
  • Zhong, L. S.; Hu, J. S.; Liang, H. P.; Cao, A. M.; Song, W. G.; Wan, L. J. Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment. Adv. Mater. 2006, 18, 2426–2431. DOI: 10.1002/adma.200600504.
  • Zhang, Y.; Li, L.; Ma, W.; Zhang, Y.; Yu, M.; Guo, J.; Lu, H.; Wang, C. Two-in-One Strategy for Effective Enrichment of Phosphopeptides Using Magnetic Mesoporous γ-Fe₂O3 Nanocrystal Clusters. ACS Appl. Mater. Interfaces 2013, 5, 614–621. DOI: 10.1021/am3019806.
  • Lai, J.; Shafi, K. V. P. M.; Loos, K.; Ulman, A.; Lee, Y.; Vogt, T.; Estournes, C. Doping Gamma-Fe(2)O(3) Nanoparticles with Mn(III) Suppresses the Transition to The alpha-Fe(2)O(3) Structure . J. Am. Chem. Soc. 2003, 125, 11470–11471. DOI: 10.1021/ja035409d.
  • Cao, D.; Li, H.; Pan, L.; Li, J.; Wang, X.; Jing, P.; Cheng, X.; Wang, W.; Wang, J.; Liu, Q. High Saturation Magnetization of γ-Fe2O3 Nano-Particles by a Facile One-Step Synthesis Approach. Sci. Rep. 2016, 6, 32360. DOI: 10.1038/srep32360.
  • Yogamalar, R.; Srinivasan, R.; Vinu, A. A.; Ariga, K.; Bose, A. C. X-ray Peak Broadening Analysis in ZnO Nanoparticles. Solid State Communications. 2009, 149, 1919–1923. DOI: 10.1016/j.ssc.2009.07.043..
  • Iqbal, M. J.; Yaqub, N. N.; Sepiol, B.; Ismail, B. A Study of the Influence of Crystallite Size on the Electrical and Magnetic Properties of CuFe2O4. Mater. Res. Bull. 2011, 46, 1837–1842. DOI: 10.1016/j.materresbull.2011.07.036.
  • Bindu, P.; Thomas, S. Estimation of Lattice Strain in ZnO Nanoparticles: X-Ray Peak Profile Analysis. J. Theor. Appl. Phys. 2014, 8, 123–134. DOI: 10.1007/s40094-014-0141-9.
  • Das, R.; Sarkar, S. Determination of Intrinsic Strain in Poly(Vinylpyrrolidone)- Capped Silver Nano-Hexapod Using X-Ray Diffraction Technique. Curr. Sci. 2015, 109, 775–778. http://www.jstor.org/stable/24905739.
  • Warren, B. E.; Averbach, B. L. Separation of Cold‐Work Distortion and Particle Size Broadening in X‐Ray Patterns. J. Appl. Phys. 1952, 23, 497–497. DOI: 10.1063/1.1702234.
  • Hall, W. H. X-Ray Line Broadening in Metals. Proc. Phys. Soc. A. 1949, 62, 741–743. DOI: 10.1088/0370-1298/62/11/110.
  • Balzar, D.; Ledbetter, H. Voigt-Function Modeling in Fourier Analysis of Size- and Strain-Broadened X-Ray Diffraction Peaks. J. Appl. Crystallogr. 1993, 26, 97–103. DOI: 10.1107/S0021889892008987.
  • Mote, V. D.; Purushotham, Y.; Dole, B. N. Williamson-Hall Analysis in Estimation of Lattice Strain in Nanometer-Sized ZnO Particles. J. Theor. Appl. Phys. 2012, 6, 6–14. DOI: 10.1186/2251-7235-6-6..
  • Halder, N. C.; Wagner, C. N. J. Separation of Particle Size and Lattice Strain in Integral Breadth Measurements. Acta Cryst. 1966, 20, 312–331. DOI: 10.1107/S0365110X66000628.
  • Motevalizadeh, L.; Heidary, Z.; Abrishami, M. E. Facile Template-Free Hydrothermal Synthesis and Microstrain Measurement of ZnO Nanorods. Bull. Mater. Sci. 2014, 37, 397–405. DOI: 10.1007/s12034-014-0676-z.
  • Lenin, N.; Sakthipandi, K.; Kanna, R. R.; Rajesh, J. Effect of Neodymium Ion on the Structural, Electrical and Magnetic Properties of Nanocrystalline Nickel Ferrites. Ceram. Int. 2018, 44, 11562–11569. DOI: 10.1016/j.ceramint.2018.03.218.
  • Kagdi, A. R.; Solanki, N. P.; Carvalho, F. E.; Meena, S. S.; Bhatt, P.; Pullar, R. C.; Jotania, R. B. Influence of Mg Substitution on Structural, Magnetic and Dielectric Properties of X-Type Bariumezinc Hexaferrites Ba2Zn2-xMgxFe28O46. J. Alloys Compd. 2018, 741, 377e391–377e391. DOI: 10.1016/j.jallcom.2018.01.092.
  • Chaudhari, H. N.; Dhruv, P. N.; Singh, C.; Meena, S. S.; Kavita, S.; Jotania, R. B. Effect of Heating Temperature on Structural, Magnetic, and Dielectric Properties of Magnesium Ferrites Prepared in the Presence of Solanum Lycopersicum Fruit Extract. J. Mater. Sci: Mater. Electron. 2020, 31, 18445–18463. DOI: 10.1007/s10854-020-04389-1.
  • Grobe, G. Mos-90: Manual and Program Documentation. Version 2.2, 2nd ed., 1992.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.