245
Views
1
CrossRef citations to date
0
Altmetric
Articles

Structural, optical, and magnetic properties of pristine and Cr doped WO3 nanoparticles

, , , &
Pages 951-960 | Received 02 Dec 2020, Accepted 25 Nov 2021, Published online: 07 Jan 2022

References

  • Ravi, S.; Winfred Shashikanth, F. Preparation of Mn Doped CeO2 Nanoparticles with Enhanced Ferromagnetism. Mater. Chem. Phys. 2017, 194, 37–41. DOI: 10.1016/j.matchemphys.2017.03.032.
  • Coey, J.; Venkatesan, M.; Fitzgerald, C. Donor Impurity Band Exchange in Dilute Ferromagnetic Oxides. Nat. Mater. 2005, 4, 173–179. [Database] DOI: 10.1038/nmat1310.
  • Zheng, N. Introduction to Dilute Magnetic Semiconductors; Department of Physics and Astronomy, The University of Tennessee: Knoxville, TN, 2008.
  • Kusuma, U. R. S.; Bhat, S. V.; Kamble, V. On Exceeding the Solubility Limit of Cr3+ Dopants in SnO2 Nanoparticles Based Dilute Magnetic Semiconductors. J. Appl. Phys. 2018, 123, 161518. DOI: 10.1063/1.4990497.
  • Thiyagarajan, K.; Muralidharan, M.; Sivakumar, K. Defects Induced Magnetism in WO3 and Reduced Graphene Oxide-WO3 Nanocomposites. J. Supercond. Nov. Magn. 2018, 31, 117–125. DOI: 10.1007/s10948-017-4184-4.
  • Pearton, S. J.; Heo, W. H.; Ivill, M.; Norton, D. P.; Steiner, T. Dilute Magnetic Semiconducting Oxides. Semicond. Sci. Technol. 2004, 19, R59–74. DOI: 10.1088/0268-1242/19/10/R01.
  • Kaur, P.; Kumar, S.; Negi, N. S.; Rao, S. M. Enhanced Magnetism in Cr-Doped ZnO Nanoparticles with Nitrogen co-Doping Synthesized Using Sol–Gel Technique. Appl. Nanosci. 2015, 5, 367–372. DOI: 10.1007/s13204-014-0326-1.
  • Dakhel, A. A. Study of Semimagnetic Mn-Doped WO3 Nanoparticles Synthesised by Precipitation Method: hydrogenation Creates a Promising DMS. J. Supercond. Nov. Magn. 2018, 31, 2039–2046. DOI: 10.1007/s10948-017-4430-9.
  • Kriti, P. K.; Simranpreet, K.; Deepawali, A.; Asokan, K.; Singh, D. P. Influence of Defect Structure on Colour Tunability and Magneto Optical Behaviour of WO3 Nanoforms. RSC Adv. 2019, 9, 20536–20548. DOI: 10.1039/c9ra01901d.
  • Si, P. Z.; Choi, C. J.; Bruck, E.; Klaasse, J. C. P.; Geng, D.; Zhang, Z. D. Synthesis, Structure and Magnetic Properties of Iron-Doped Tungsten Oxide Nanorods. Phys. B Condens 2007, 392, 154–158. DOI: 10.1016/j.physb.2006.11.011.
  • Hariharan, V.; Aroulmoji, V.; Prabakaran, K.; Gnanavel, B.; Parthibavarman, M.; Sathyapriya, R.; Kanagaraj, M. Magnetic and Electrochemical Behaviour of Cobalt Doped Tungsten Oxide (WO3) Nanomaterials by Microwave Irradiation Method. J. Alloys Compd. 2016, 689, 41–47. DOI: 10.1016/j.jallcom.2016.07.136.
  • Liu, Y.; Yang, Y.; Yang, J.; Guan, Q.; Liu, H.; Yang, L.; Zhang, Y.; Wang, Y.; Wei, M.; Liu, X.; et al. Intrinsic Ferromagnetic Properties in Cr-Doped ZnO Diluted Magnetic Semiconductors. J. Solid State Chem. 2011, 184, 1273–1278. DOI: 10.1016/j.jssc.2011.03.049.
  • Kumar, S.; Tiwari, N.; Jha, S. N.; Chatterjee, S.; Bhattacharyya, D.; Ghosh, A. K. Structural and Optical Properties of Sol–Gel Derived Cr-Doped ZnO Diluted Magnetic Semiconductor Nanocrystals: An EXAFS Study to Relate the Local Structure. RSC Adv. 2016, 6, 107816–107828. DOI: 10.1039/C6RA15685A.
  • Cen, S.; Lv, X.; Jiang, Y.; Fakhri, A.; Gupta, V. K. Synthesis and Structure of Iron–Copper/Hollow Magnetic/Metal–Organic Framework/Coordination Sites in a Heterogeneous Catalyst for a Fenton-Based Reaction. Catal. Sci. Technol. 2020, 10, 6687–6693. DOI: 10.1039/D0CY01027H.
  • Wen, J.; Liu, X.; Liu, L.; Ma, X.; Fakhri, A.; Gupta, V. K. Bimetal cobalt-Iron Based Organic Frameworks with Coordinated Sites as Synergistic Catalyst for Fenton Catalysis Study and Antibacterial Efficiency. Colloid. Surf. A Physicochem. Eng. 2021, 610, 125683. DOI: 10.1016/j.colsurfa.2020.125683.
  • Zhang, J.; Ding, E.; Xu, S.; Li, Z.; Fakhri, A.; Gupta, V. K. Production of Metal Oxides Nanoparticles Based on Poly-Alanine/Chitosan/Reduced Graphene Oxide for Photocatalysis Degradation, anti-Pathogenic Bacterial and Antioxidant Studies. Int. J. Biol. Macromol. 2020, 164, 1584–1591. DOI: 10.1016/j.ijbiomac.2020.07.291.
  • Ashraf, M. A.; Li, C.; Zhang, D.; Zhao, L.; Fakhri, A. Fabrication of Silver Phosphate-Ilmenite Nanocomposites Supported on Glycol Chitosan for Visible Light-Driven Degradation, and Antimicrobial Activities. Int. J. Biol. Macromol. 2021, 169, 436–442. DOI: 10.1016/j.ijbiomac.2020.12.049.
  • Cai, Y.; Yang, F.; Wu, L.; Shu, Y.; Qu, G.; Fakhri, A.; Gupta, V. K. Hydrothermal Ultrasonic Synthesis of CuO Nanorods and CuWO4 Nanoparticles for Catalytic Reduction, Photocatalysis Activity, and Antibacterial Properties. Mater. Chem. Phys. 2021, 258, 123919. DOI: 10.1016/j.matchemphys.2020.123919.
  • Sivakumar, R.; Raj, A. M. E.; Subramanian, B.; Jayachandran, M.; Trivedi, D. C.; Sanjeeviraja, C. Preparation and Characterization of Spray Deposited n-Type WO3 Thin Films for Electrochromic Devices. Mater. Res. Bull. 2004, 39, 1479–1489. DOI: 10.1016/j.materresbull.2004.04.023.
  • Parthibavarman, M.; Vallalperuman, K.; Sathishkumar, S.; Durairaj, M.; Thavamani, K. A Novel Microwave Synthesis of Nanocrystalline SnO2 and Its Structural Optical and Dielectric Properties. J. Mater. Sci. Mater. Electron. 2014, 25, 730–735. DOI: 10.1007/s10854-013-1637-9.
  • Huang, M.; Zhang, R.; Yang, Z.; Chen, J.; Deng, J.; Fakhri, A.; Gupta, V. K. Synthesis of Co3S4-SnO2/Polyvinylpyrrolidone-Cellulose Heterojunction as Highly Performance Catalyst for Photocatalytic and Antimicrobial Properties under Ultra-Violet Irradiation. Int. J. Biol. Macromol. 2020, 162, 220–228. DOI: 10.1016/j.ijbiomac.2020.06.092.
  • Parthibavarman, M.; Karthik, M.; Sathishkumar, P.; Poonguzhali, R. Rapid Synthesis of Novel Cr-Doped WO3 Nanorods: An Efficient Electrochemical and Photocatalytic Performance. J. Iran. Chem. Soc. 2018, 15, 1419–1430. DOI: 10.1007/s13738-018-1342-y.
  • Pradeev Raj, K.; Sadaiyandi, K.; Kennedy, A.; Sagadevan, S.; Zaman Chowdhury, Z.; Bin Johan, M. R.; Aziz, F. A.; Rafique, R. F.; Thamiz Selvi, R.; Rathina Bala, R. Influence of Mg Doping on ZnO Nanoparticles for Enhanced Photocatalytic Evaluation and Antibacterial Analysis. Nanoscale. Res. Lett. 2018, 13, 229–242. DOI: 10.1186/s11671-018-2643-x.
  • Yang, M.; Lu, F.; Zhou, T.; Zhao, J.; Ding, C.; Fakhri, A.; Gupta, V. K. Biosynthesis of Nano Bimetallic Ag/Pt Alloy from Crocus Sativus L. Extract: Biological Efficacy and Catalytic Activity. J. Photochem. Photobiol. B. 2020, 212, 112025. DOI: 10.1016/j.jphotobiol.2020.112025.
  • Aslam, I.; Hassan Farooq, M.; Iqbal, M. W.; Boddula, R.; Abid, M.; Ashfaq, M.; Ghani, U. Synthesis of WO3.H2O Spherical Particles for Efficient Photocatalytic Properties under Visible Light Source. Mater. Sci. Ener. Technol. 2019, 2, 187–193. DOI: 10.1016/j.mset.2019.02.002.
  • Jiang, W.; Yang, K.; Richard Vachet, W.; Xing, B. Interaction between Oxide Nanoparticles and Biomolecules of the Bacterial Cell Envelope as Examined by Infrared Spectroscopy. Langmuir 2010, 26, 18071–18077. DOI: 10.1021/la103738e.
  • Mehmood, F.; Iqbal, J.; Jan, T.; Ahmed, W.; Ahmed, W.; Arshad, A.; Mansoor, Q.; Ilyas, S. Z.; Ismail, M.; Ahmad, I. Effect of Sn Doping on the Structural, Optical, Electrical and Anticancer Properties of WO3 Nanoplates. Ceram. Int. 2016, 42, 14334–14341. DOI: 10.1016/j.ceramint.2016.04.010.
  • Li Bassi, A.; Cattaneo, D.; Russo, V.; Bottani, C. E.; Barborini, E.; Mazza, T.; Piseri, P.; Milani, P.; Ernst, F. O.; Wegner, K.; Pratsinis, S. E. Raman Spectroscopy Characterization of Titania Nanoparticles Produced by Flame Pyrolysis: The Influence of Size and Stoichiometry. J. Appl. Phys. 2005, 98, 074305. DOI: 10.1063/1.2061894.
  • Yang, Y.; Aqeel Ashraf, M.; Fakhri, A.; Kumar Gupta, V.; Zhang, D. Facile Synthesis of Gold-Ailver/Copper Sulfide Nanoparticles for the Selective/sensitive Detection of Chromium, Photochemical and Bactericidal Application. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2021, 249, 119324. DOI: 10.1016/j.saa.2020.119324.
  • Eskandari, L.; Andalib, F.; Fakhri, A.; Jabarabadi, M. K.; Pham, B.; Gupta, V. K. Facile Colorimetric Detection of Hg (II), Photocatalytic and Antibacterial Efficiency Based on Silver-Manganese Disulfide/polyvinyl Alcohol-chitosan Nanocomposites. Int. J. Biol. Macromol. 2020, 164, 4138–4145. DOI: 10.1016/j.ijbiomac.2020.09.015.
  • Pal, M.; Pal, U.; Jiménez, J. M. G. Y.; Pérez-Rodríguez, F. Effects of Crystallization and Dopant Concentration on the Emission Behavior of TiO2:Eu nanophosphors. Nanoscale. Res. Lett. 2012, 7, 1–12. DOI: 10.1186/1556-276X-7-1.
  • Hua-Jun, Y.; Ya-Qi, C.; Fang, Y.; Yue-Hua, P.; Xiong-Wu, H.; Ding, Z.; Dong-Sheng, T. Hydrothermal Synthesis and Chromic Properties of Hexagonal WO3 Nanowires. Chin. Phys. B 2011, 20, 036103. DOI: 10.1088/1674-1056/20/3/036103.
  • Wang, F.; Di Valentin, C.; Pacchioni, G. Doping of WO3 for Photocatalytic Water Splitting: Hints from Density Functional Theory. J. Phys. Chem. C. 2012, 116, 8901–8909. doi: 10.1021/jp300867j.
  • You Zheng, J.; Haider, Z.; Van, T. K.; Uttam Pawar, A.; Kang, M. J.; Kim, C. W.; Kang, Y. S. Tuning of the Crystal Engineering and Photoelectrochemical Properties of Crystalline Tungsten Oxide for Optoelectronic Device Applications. Cryst. Eng. Commun. 2015, 17, 6070–6093. doi: 10.1039/C5CE00900F.
  • Akshay, V. R.; Arun, B.; Mandal, G.; Vasundhara, M. Visible Range Optical Absorption, Urbach Energy Estimation and Paramagnetic Response in Cr-doped TiO2 nanocrystals derived by a sol-gel method. Phys. Chem. Chem. Phys. 2019, 21, 12991–13004. DOI: 10.1039/C9CP01351B.
  • Sanjines, R.; Tang, H.; Berger, H.; Gozzo, F.; Margaritondo, G.; LéVy, F. Electronic Structure of Anatase TiO2 Oxide. J. Appl. Phys. 1994, 75, 2945–2951. DOI: 10.1063/1.356190.
  • Akshay, V. R.; Arun, B.; Dash, S.; Patra, A. K.; Mandal, G.; Mutta, G. R.; Chanda, A.; Vasundhara, M. Defect Mediated Mechanism in Undoped, Cu and Zn-Doped TiO2 Nanocrystals for Tailoring the Band Gap and Magnetic Properties. RSC Adv. 2018, 8, 41994–42008. DOI: 10.1039/C8RA07287F.
  • Chen, S.; Zhao, X.; Xie, H.; Liu, J.; Duan, L.; Ba, X.; Zhao, J. Photoluminescence of Undoped and Ce-Doped SnO2 Thin Films Deposited by Sol–Gel-Dip-Coating Method. Appl. Surf. Sci. 2012, 258, 3255–3259. DOI: 10.1016/j.apsusc.2011.11.077.
  • Kim, D.; Hong, J.; Park, Y. R.; Kim, K. J. The Origin of Oxygen Vacancy Induced Ferromagnetism in Undoped TiO(2). J. Phys. Condens. Matter. 2009, 21, 195405. DOI: 10.1088/0953-8984/21/19/195405.
  • Kaur, P.; Pandey, S. K.; Kumar, S.; Negi, N. S.; Chen, C. L.; Rao, S. M.; Wu, M. K. Tuning Ferromagnetism in Zinc Oxide Nanoparticles by Chromium Doping. Appl. Nanosci. 2015, 5, 975–981. DOI: 10.1007/s13204-014-0394-2.
  • Ravi, S.; Senthilkumar, C. Room Temperature Multiferrocity in a New Ba2FeMnO6 Double Perovskite Material. Ceram. Int. 2017, 43, 14441–14445. DOI: 10.1016/j.ceramint.2017.07.217.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.