144
Views
0
CrossRef citations to date
0
Altmetric
Articles

Ce supported Al2O3 nanoparticles synthesized by coprecipitation method; morphology and optoelectronic study

, &
Pages 1041-1049 | Received 20 Oct 2020, Accepted 25 Nov 2021, Published online: 02 Feb 2022

References

  • Shadrokh, S.; Farahmandjou, M.; Firozabadi, T. P. Fabrication and Characterization of Nanoporous Co Oxide (Co3O4) Prepared by Simple Sol-Gel Synthesis. Phys. Chem. Res. 2016, 4, 153–160. DOI: 10.22036/pcr.2016.12909.
  • Farahmandjou, M.; Honarbakhsha, S.; Behrouziniab, S. PVP-Assisted Synthesis of Cobalt Ferrite (CoFe2O4) Nanorods. Phys. Chem. Res 2016, 4, 655–662. DOI: 10.22036/pcr.2016.16702.
  • Farahmandjou, M.; Soflaee, F. Synthesis and Characterization of α-Fe2O3 Nanoparticles by Simple co-Precipitation Method. Phys. Chem. Res. 2015, 3, 193–198. DOI: 10.22036/pcr.2015.9193.
  • Farahmandjou, M.; Soflaee, F. Polymer-Mediated Synthesis of Iron Oxide (Fe2O3) Nanorods. Chin. J. Phys. 2015, 53, 080801–080809. DOI: 10.6122/CJP.20150413.
  • Zarinkamar, M.; Farahmandjou, M.; Firoozabadi, T. P. Diethylene Glycol-Mediated Synthesis of Nano-Sized Ceria (CeO2) Catalyst. J. Nanostruct 2016, 6, 116–120. DOI: 10.7508/jns.2016.02.002.
  • Farahmandjou, M. Synthesis of ITO Nanoparticles Prepared by Degradation of Sulfide Method. Chinese Phys. Lett. 2012, 29, 077306–077309. DOI: 10.1088/0256-307X/29/7/077306.
  • Zarinkamar, M.; Farahmandjou, M.; Firoozabadi, T. P. One-Step Synthesis of Ceria (CeO2) Nano-Spheres by a Simple Wet Chemical Method. J. Ceram. Proc. Res. 2016, 17, 166–169.
  • Farahmandjou, M.; Zarinkamar, M. Synthesis of Nano-Sized Ceria (CeO2) Particles via a Cerium Hydroxy Carbonate Precursor and the Effect of Reaction Temperature on Particle Morphology. J. Ultrafine Grained Nanostruct. Mater. 2015, 48, 5–10. DOI: 10.7508/jufgnsm.2015.01.002.
  • Farahmandjou, M. The Study of Electro-Optical Properties of Nanocomposite ITO Thin Films Prepared by e-Beam Evaporation. Rev. mex. Fís 2013, 59, 205–207.
  • Saleh, T. A. Nanomaterials: Classification, Properties, and Environmental Toxicities. Environ. Technol. Innovation 2020, 20, 101067. DOI: 10.1016/j.eti.2020.101067.
  • Saleh, T. A. Characterization, Determination and Elimination Technologies for Sulfur from Petroleum: Toward Cleaner Fuel and a Safe Environment. Trends Environ. Anal. Chem. 2020, 25, e00080. DOI: 10.1016/j.teac.2020.e00080.
  • Saleh, T. A.; Parthasarathy, P.; Irfan, M. Advanced Functional Polymer Nanocomposites and Their Use in Water Ultra-Purification. Trends Environ. Anal. Chem. 2019, 24, e00067. DOI: 10.1016/j.teac.2019.e00067.
  • Farahmandjou, M.; Golabiyan, N. Synthesis and Characterization of Alumina (Al2O3) Nanoparticles Prepared by Simple Sol-Gel Method. Int. J. Bio-Inorg. Hybr. Nanomater 2016, 5, 73–77.
  • Farahmandjou, M.; Golabiyan, N. Solution Combustion Preparation of nano-Al2O3: Synthesis and Characterization. Transp. Phenom. Nano Micro Scales 2015, 3, 100–105. DOI: 10.7508/tpnms.2015.02.004.
  • Farahmandjou, M.; Golabiyan, N. New Pore Structure of Nano-Alumina (Al2O3) Prepared by Sol Gel Method. J. Ceram. Proc. Res 2015, 16, 237–240.
  • Farahmandjou, M.; Golabiyan, N. Synthesis and Characterisation of Al2O3 Nanoparticles as Catalyst Prepared by Polymer co-Precipitation Method. Mater. Eng. Res. 2019, 1, 40–44. DOI: 10.25082/MER.2019.02.002.
  • D'Antonio, J.; Capello, W.; Manley, M.; Bierbaum, B. New Experience with Alumina-on-Alumina Ceramic Bearings for Total Hip Arthroplasty. J. Arthroplasty. 2002, 17, 390–397. DOI: 10.1054/arth.2002.32183.
  • Garino, J.; Rahaman, M. N.; Sonny, B. The Reliability of Modern Alumina Bearings in Total Hip Arthroplasty. Semin Arthro 2006, 17, 113–119. https://doi.org/10.1053/j.sart.2014.01.003. DOI: 10.1053/j.sart.2006.09.004.
  • Mandrino, A.; Eloy, R.; Moyen, B.; Lerat, J.-L.; Treheux, D. Base Alumina Ceramics with Dispersoids: Mechanical Behaviour and Tissue Response after in-Vivo Implantation. J. Mater. Sci: Mater. Med. 1992, 3, 457–463. DOI: 10.1007/BF00701243.
  • Piconi, C.; Maccauro, G.; Muratori, E.; Brach, E. Alumina and Zirconia Ceramics in Joint Replacements: A Review. J. Appl. Biomat. Biomech. 2003, 1, 19–32. DOI: 10.1177/228080000300100103.
  • Farahmandjou, M.; Motaghi, S. Sol-Gel Synthesis of Ce-Doped α-Al2O3: Study of Crystal and Optoelectronic Properties. Opt. Commun. 2019, 441, 1–7. DOI: 10.1016/j.optcom.2019.02.029.
  • Motaghi, S.; Farahmandjou, M. Structural and Optoelectronic Properties of Ce-Al2O3 Nanoparticles Prepared by Sol-Gel Precursors. Mater. Res. Express 2019, 6, 045008. DOI: 10.1088/2053-1591/aaf927.
  • Khodadadi, A.; Farahmandjou, M.; Yaghoubi, M.; Amani, A. R. Structural and Optical Study of Fe3+-Doped Al2O3 Nanocrystals Prepared by New Sol Gel Precursors. Int. J. Appl. Ceram. Technol. 2019, 16, 718–726. DOI: 10.1111/ijac.13065.
  • Khodadadi, A.; Farahmandjou, M.; Yaghoubi, M. Investigation on Synthesis and Characterization of Fe-Doped Al2O3 Nanocrystals by New Sol–Gel Precursors. Mater. Res. Express 2018, 6, 025029. DOI: 10.1088/2053-1591/aaef70.
  • Farahmandjou, M.; Khodadadi, A.; Yaghoubi, M. Low Concentration Iron-Doped Alumina (Fe/Al2O3) Nanoparticles Using Co-Precipitation Method. J. Supercond. Nov. Magn. 2020, 33, 3425–3432. DOI: 10.1007/s10948-020-05569-0.
  • Farahmandjou, M.; Khodadadi, A.; Yaghoubi, M. Synthesis and Characterization of Fe-Al2O3 nanoparticles Prepared by Coprecipitation Method. Iran J. Chem. Chem. Engin. 2021, 40, 725-730. DOI: 10.30492/ijcce.2020.38036.
  • Levin, I.; Bendersky, L.; Brandon, D.; Rühle, M. Cubic to Monoclinic Phase Transformations in Alumina. Acta Mater. 1997, 45, 3659–3669. https://doi.org/10.1016/S1359-6454.(97)00040-2. DOI: 10.1016/S1359-6454(97)00040-2.
  • Wang, Y. G.; Bronsveld, P. M.; DeHosson, J. M.; Djuričić, B.; McGarry, D.; Pickering, S. Ordering of Octahedral Vacancies in Transition Aluminas. J. Am. Ceram. Soc. 2005, 81, 1655–1660. DOI: 10.1111/j.1151-2916.1998.tb02527.x.
  • Paglia, G.; Buckley, C. E.; Rohl, A. L.; Hart, R. D.; Winter, K.; Studer, A. J.; Hunter, B. A.; Hanna, J. V. Boehmite Derived γ-Alumina System. 1. Structural Evolution with Temperature, with the Identification and Structural Determination of a New Transition Phase, γ-Alumina. Chem. Mater. 2004, 16, 220–236. DOI: 10.1002/chin.200414015.
  • French, R. H.; Müllejans, H.; Jones, D. J. Optical Properties of Aluminum Oxide: Determined from Vacuum Ultraviolet and Electron Energy Loss Spectroscopies. J. Am. Ceram. Soc 2005, 81, 2549–2557. DOI: 10.1111/j.1151-2916.1998.tb02660.x.
  • Sohlberg, K.; Pennycook, S. J.; Pantelides, S. T. Hydrogen and the Structure of the Transition Aluminas. J. Am. Chem. Soc. 1999, 121, 7493–7499. DOI: 10.1021/ja991098o.
  • Sohlberg, K.; Pennycook, S. J.; Pantelides, S. T. Explanation of the Observed Dearth of Three-Coordinated Al on γ-Alumina Surfaces. J. Am. Chem. Soc. 1999, 121, 10999–11001. DOI: 10.1021/ja9926358.
  • Bolis, V.; Cerrato, G.; Magnacca, G.; Morterra, C. Surface Acidity of Metal Oxides. Combined Microcalorimetric and IR-Spectroscopic Studies of Variously Dehydrated Systems. Thermochim. Acta 1998, 312, 63–77. DOI: 10.1016/S0040-6031(97)00440-1.
  • Kim, H. N.; Lee, S. K. Effect of Particle Size on Phase Transitions in Metastable Alumina Nanoparticles: A View from High-Resolution Solid-State 27Al NMR Study. Am. Mineralogist 2013, 98, 1198–1210. DOI: 10.2138/am.2013.4364.
  • Farahmandjou, M.; Khalili, P. Study of Nano SiO2/TiO2 Superhydrophobic Self-Cleaning Surface Produced by Sol-Gel. Aust. J. Basic. Appl. Sci. 2013, 7, 462–465.
  • Farahmandjou, M.; Salehizadeh, S. A. The Optical Band Gap and the Tailing States Determination in Glasses of TeO2-V2O5-K2O System. Glass Phys. Chem. 2013, 39, 473–479. DOI: 10.1134/S1087659613050052.
  • Dastpak, M.; Farahmandjou, M.; Firoozabadi, T. P. Synthesis and Preparation of Magnetic Fe-Doped CeO2 Nanoparticles Prepared by Simple Sol-Gel Method. J. Supercond. Nov. Magn. 2016, 29, 2925–2929. DOI: 10.1007/s10948-016-3639-3.
  • Farahmandjou, M.; Dastpak, M. Fe-Loaded CeO2 Nanosized Prepared by Simple Co-Precipitation Route. Phys. Chem. Res. 2018, 6, 713–720. DOI: 10.22036/pcr.2018.132220.1486.
  • Akhtari, F.; Zorriasatein, S.; Farahmandjou, M.; Elahi, S. M. Structural, Optical, Thermoelectrical, and Magnetic Study of Zn1-xCoxO (0 ≤ x ≤ 0.10) Nanocrystals. Int. J. Appl. Ceram. Technol. 2018, 15, 723–733. DOI: 10.1111/ijac.12848.
  • Akhtari, F.; Zorriasatein, S.; Farahmandjou, M.; Elahi, S. M. Synthesis and Optical Properties of Co2+-Doped ZnO Network Prepared by New Precursors. Mater. Res. Express 2018, 5, 065015. DOI: 10.1088/2053-1591/aac6f1.
  • Khoshnevisan, B.; Marami, M. B.; Farahmandjou, M. Fe3+-Doped Anatase TiO2 Study Prepared by New Sol-Gel Precursors. Chinese Phys. Lett. 2018, 35, 027501–027505. . DOI: 10.1088/0256-307X/35/2/027501.
  • Marami, M. B.; Farahmandjou, M.; Khoshnevisan, B. Solgel Synthesis of Fe-Doped TiO2 Nanocrystals. Journal of Elec. Materi. 2018, 47, 3741–3749. DOI: 10.1007/s11664-018-6234-5.
  • Jafari, A.; Khademi, S.; Farahmandjou, M. Nano-Crystalline Ce-Doped TiO2 Powders: Sol-Gel Synthesis and Optoelectronic Properties. Mater. Res. Express 2018, 5, 095008. DOI: 10.1088/2053-1591/aad5b5.
  • Jafari, A.; Khademi, S.; Farahmandjou, M.; Darudi, A.; Rasuli, R. Structural and Optical Properties of Ce3+-Doped TiO2 Nanocrystals Prepared by Sol-Gel Precursors. J. Elec. Materi. 2018, 47, 6901–6908. DOI: 10.1007/s11664-018-6590-1.
  • Marami, M. B.; Farahmandjou, M. Water-Based Sol–Gel Synthesis of Ce-Doped TiO2 Nanoparticles. J. Elec. Materi. 2019, 48, 4740–4747. DOI: 10.1007/s11664-019-07265-9.
  • Farahmandjou, M.; Dastpak, M. Synthesis of Fe-Doped CeO2 Nanoparticles Prepared by Solgel Method. J. Sci. Islamic Republic Iran 2020, 31, 39–43. DOI: 10.22059/jsciences.2020.256813.1007255.
  • Jafari, A.; Khademi, S.; Farahmandjou, M.; Darudi, A.; Rasuli, R. Preparation and Characterization of Cerium Doped Titanium Dioxide Nanoparticles by the Electrical Discharge Method. Jame. 2019, 38, 83–90. DOI: 10.29252/jame.38.2.83.
  • Nayar, P.; Waghmare, S.; Singh, P.; Najar, M.; Puttewar, S.; Agnihotri, A. Comparative Study of Phase Transformation of Al2O3 Nanoparticles Prepared by Chemical Precipitation and Sol-Gel Auto Combustion Methods. Mater. Today: Proc. 2020, 26, 122–125. DOI: 10.1016/j.matpr.2019.05.450.
  • Lucio-Ortiz, C. J.; De la Rosa, J. R.; Ramirez, A. H.; De los Reyes Heredia, J. A.; del Angel, P.; Muñoz-Aguirre, S.; De León-Covián, L. M. Synthesis and Characterization of Fe Doped Mesoporous Al2O3 by Sol–Gel Method and Its Use in Trichloroethylene Combustion. J. Sol-Gel Sci. Technol. 2011, 58, 374–384. DOI: 10.1007/s10971-011-2403-1.
  • Dimas-Rivera, G. L.; De la Rosa, J. R.; Lucio-Ortiz, C. J.; Antonio De los Reyes Heredia, J.; González González, V.; Hernández, T. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts. Materials (Basel) 2014, 7, 527–541. DOI: 10.3390/ma7010527.
  • Saleh, T. A. Simultaneous Adsorptive Desulfurization of Diesel Fuel over Bimetallic Nanoparticles Loaded on Activated Carbon. J. Cleaner Prod. 2018, 172, 2123–2132. DOI: 10.1016/j.jclepro.2017.11.208.
  • Saleh, T. A. The Influence of Treatment Temperature on the Acidity of MWCNT Oxidized by HNO3 or a Mixture of HNO3/H2SO4. Appl. Surf. Sci. 2011, 257, 7746–7751. DOI: 10.1016/j.apsusc.2011.04.020.
  • Saleh, T. A.; Al-Hammadi, S. A.; Al-Amer, A. M. Process Safety and Environmental Protection Effect of Boron on the Efficiency of MoCo Catalysts Supported on Alumina for the Hydrodesulfurization of Liquid Fuels. Process Safety and Environ. Protect. 2019, 121, 165–174. DOI: 10.1016/j.psep.2018.10.019.
  • Sifontes, A. B.; Fragachán, G.; Calderón, J.; Mediavilla, M.; Solano, R.; Brito, J. L.; Melo, L. Síntesis de Óxidos de Aluminio de Alta Área Superficial y Porosidad Empleando un Medio Acuoso y Carbohidratos Como Templates. CIENCIA 2010, 18, 65–75.
  • Liu, Q.; Wang, A.; Wang, X.; Zhang, T. Mesoporous g-Alumina Synthesized by Hydro-Carboxylic Acid as Structure-Directing Agent Micropor. Mesopor, Mat. 2006, 92, 10–21. DOI: 10.1016/j.micromeso.2005.12.012.
  • Saleh, T. A. Isotherm, Kinetic, and Thermodynamic Studies on Hg(II) Adsorption from Aqueous Solution by Silica- Multiwall Carbon Nanotubes. Environ. Sci. Pollut. Res. Int. 2015, 22, 16721–16731. . DOI: 10.1007/s11356-015-4866-z.
  • Saleh, T. A.; Gupta, V. K. Characterization of the Chemical Bonding between Al2O3 and Nanotube in MWCNT/Al2O3 Nanocomposite. Curr. Nanosci. 2012, 8, 739–743. DOI: 10.2174/157341312802884418.
  • Al-Hammadi, S. A.; Al-Amer, A. M.; Saleh, T. A. Alumina-Carbon Nanofiber Composite as a Support for MoCo Catalysts in Hydrodesulfurization Reactions. Chem. Engin. J. 2018, 345, 242–251. DOI: 10.1016/j.cej.2018.03.106.
  • Farahmandjou, M. Magnetocrystalline Properties of Iron-Platinum (L10-FePt) Nanoparticles through Phase Transition. IJPR 2016, 16, 1–5. DOI: 10.18869/acadpub.ijpr.16.1.1.
  • Farahmandjou, M. Synthesis and Structural Study of L10- FePt Nanoparticles. Turk. J. Engin. Environ. Sci. 2010, 34, 265–270. DOI: 10.3906/muh-1010-20.
  • Farahmandjou, M.; Honarbakhsh, S.; Behrouzinia, S. FeCo Nanorods Preparation Using New Chemical Synthesis. J. Supercond. Nov. Magn. 2018, 31, 4147–4152. DOI: 10.1007/s10948-018-4659-y.
  • Farahmandjou, M. Effect of Oleic Acid and Oleylamine Surfactants on the Size of FePt Nanoparticles. J. Supercond. Nov. Magn. 2012, 25, 2075–2079. DOI: 10.1007/s10948-012-1586-1.
  • Hoseini, F.; Farahamndjou, M.; Firoozabadi, T. P. Coprecipitation Synthesis of Zinc Ferrit (FE2O3/ZnO) Nanoparticles Prepared by Ctab Surfactant. J. Fundam. And Appl. Sci. 2016, 8, 738–745. DOI: 10.4314/jfas.v8i3s.258.
  • Honarbakhsh, S.; Farahmandjou, M.; Behroozinia, S. Synthesis and Characterization of Iron Cobalt (FeCo) Nanorods Prepared by Simple Co-Precipitation Method. J. Fundam. Appl. Sci. 2016, 8, 892–900. DOI: 10.4314/jfas.8vi2s.142.
  • Sebt, S. A.; Parhizgar, S. S.; Farahmandjou, M.; Aberomand, P.; Akhavan, M. The Role of Ligands in the Synthesis of FePt Nanoparticles. J. Supercond. Nov. Magn. 2009, 22, 849–854. DOI: 10.1007/s10948-009-0509-2.
  • Farahmandjou, M.; Sebt, S. A.; Parhizgar, S. S.; Aberomand, P.; Akhavan, M. Stability Investigation of Colloidal FePt Nanoparticle Systems by Spectrophotometer Analysis. Chinese Phys. Lett. 2009, 26, 027501–027503. DOI: 10.1088/0256-307X/26/2/027501.
  • Farahmandjou, M.; Sebt, S. A.; Parhizgar, S. S.; Aberomand, P.; Akhavan, M. The Effect of NaCl Prepared by Ultra-Sonic Vibration on the Sintering of Annealed FePt Nanoparticles. J. Phys: Conf. Ser. 2009, 153, 012050. DOI: 10.1088/1742-6596/153/1/012050.
  • Farahmandjou, M. Liquid Phase Synthesis of Indium Tin Oxide (ITO) Nanoparticles Using in (III) and Sn (IV) Salts. Aust. J. Basic Appl. Sci. 2013, 7, 31–34.
  • Farahmandjou, M. Comparison of the Fe and Pt Nanoparticles with FePt Alloy Prepared by Polyol Process: Shape and Composition Study. Acta Phys. Pol. A. 2013, 123, 277–278. DOI: 10.12693/APhysPolA.123.277.
  • Farahmandjou, M. The Effect of Reflux Process on the Size and Uniformity of FePt Nanoparticles. IJFPS. 2011, 1, 57–59. DOI: 10.14331/ijfps.2011.330014.
  • Derakhshan, A. A.; Rajabi, L. Review on Applications of Carboxylate–Alumoxane. Nanostruct. Powder Technol. 2012, 226, 117–129. . DOI: 10.1016/j.powtec.2012.04.031.
  • Farahmandjou, M.; Zarinkamar, M.; Firoozabadi, T. P. Synthesis of Cerium Oxide (CeO2) Nanoparticles Using Simple Co-Precipitation Method. Rev. mex. Fís 2016, 62, 496–499.
  • Farahmandjou, M.; Soflaee, F. Synthesis of Iron Oxide Nanoparticles Using Borohydride Reduction. Int. J. Bio-Inorg. Hybr. Nanomater 2014, 3, 203–206.
  • Jurablu, S.; Farahmandjou, M.; Firoozabadi, T. P. Multiple-Layered Structure of Obelisk-Shaped Crystalline nano-ZnO Prepared by Sol–Gel Route. J. Theor. Appl. Phys. 2015, 9, 261–266. DOI: 10.1007/s40094-015-0184-6.
  • Farahmandjou, M.; Ramazani, M. Fabrication and Characterization of Rutile TiO2 Nanocrystals by Water Soluble Precursor. Phys. Chem. Res. 2015, 3, 293–298. DOI: 10.22036/pcr.2015.10641.
  • Jurablu, S.; Farahmandjou, M.; Firoozabadi, T. P. Sol-Gel Synthesis of Zinc Oxide (ZnO) Nanoparticles: study of Structural and Optical Properties. J. Sci. Islamic Republic of Iran 2015, 26, 281–285.
  • Farahmandjou, M.; Khalili, P. Morphology Study of Anatase Nano-TiO2 for Self-Cleaning Coating. IJFPS 2013, 3, 54–56. DOI: 10.14331/ijfps2013.330055.
  • Ramazani, M.; Farahmandjou, M.; Firoozabadi, T. P. Effect of Nitric Acid on Particle Morphology of the Nano-TiO2. Int. J. Nanosci. Nanotech. 2015, 11, 115–122.
  • Farahmandjou, M. One-Step Synthesis of TiO2 Nanoparticles Using Simple Chemical Technique. Mater. Eng. Res. 2019, 1, 15–19. DOI: 10.25082/MER.2019.01.004.
  • Moghimi, A.; Farahmandjou, M. Preconcentration of Cd (II) by Chemically Converted Graphene Sheets Adsorbed on Surfactant-Coated C18 before Determination by Flame Atomic Absorption Spectrometry (FAAS). Afr. J. Pure Appl. Chem. 2014, 8, 1–8. DOI: 10.5897/AJPAC2013.0542.
  • Farahmandjou, M. Self-Cleaning Measurement of Nano-Sized Photoactive TiO2. J. Computer & Robot. 2014, 7, 15–19.
  • Farahmandjou, M.; Abaeyan, N. Simple Synthesis of Vanadium Oxide (V2O5) Nanorods in Presence of CTAB Surfactant. Colloid Surf. Sci. 2016, 1, 10–13. DOI: 10.11648/j.css.20160101.13.
  • Adio, S. O.; Omar, M. H.; Asif, M.; Saleh, T. A. Arsenic and Selenium Removal from Water Using Biosynthesized Nanoscale Zero-Valent Iron: A Factorial Design Analysis. Process Safety Environ. Protect. 2017, 107, 518–527. DOI: 10.1016/j.psep.2017.03.004.
  • Saleh, T. A.; Adio, S. O.; Asif, M.; Dafalla, H. Statistical Analysis of Phenols Adsorption on Diethylenetriamine-Modified Activated Carbon. J. Cleaner Prod. 2018, 182, 960–968. DOI: 10.1016/j.jclepro.2018.01.242.
  • Fu, Y. P.; Lin, C. H.; Hsu, C. S. Preparation of Ultrafine CeO2, Powders by Microwave-Induced Combustion and Precipitation. J. Alloys Compd. 2005, 391, 110–114. DOI: 10.1016/j.jallcom.2004.07.079.
  • Ferguson, J.; Wood, D. L.; Van Uitert, L. G. Crystal Field Spectra of D3,7 Ions. v. tetrahedral Co2+ in ZnAl2O4 Spinel. J. Chem. Phys. 1969, 51, 2904–2910. DOI: 10.1063/1.1672431.
  • Behrouzinia, S.; Salehinia, D.; Khorasani, K.; Farahmandjou, M. The Continuous Control of Output Power of a CuBr Laser by a Pulsed External Magnetic Field. Opt. Commun. 2019, 436, 143–145. DOI: 10.1016/j.optcom.2018.12.016.
  • Farahmandjou, M.; Abaeiyan, N. Chemical Synthesis of Vanadium Oxide (V2O5) Nanoparticles Prepared by Sodium Metavanadate. J. Nanomed. Res. 2017, 5, 103.
  • Farahmandjou, M.; Soflaee, F. Low Temperature Synthesis of α-Fe2O3 Nano-Rods Using Simple Chemical Route. J. Nanostruct. 2014, 4, 413–418. DOI: 10.7508/jns.2014.04.002.
  • Farahmandjou, M.; Jurablu, S. Co-Precipitation Synthesis of Zinc Oxide (ZnO) Nanoparticles by Zinc Nitrate Precursor. Int. J. Bio-Inorg. Hybr. Nanomater. 2014, 3, 179–184.
  • Farahmandjou, M. Two Step Growth Process of Iron-Platinum (FePt) Nanoparticles. Int. J. Phys. Sci. 2012, 7, 2713–2719. DOI: 10.5897/IJPS11.1456.
  • Farahmandjou, M. Shape and Composition Study of Iron-Platinum (FePt) Nanoalloy Prepared by Polyol Process. Int. J. Phys. Sci. 2012, 7, 1938–1942. DOI: 10.5897/IJPS11.1710.
  • Farahmandjou, M.; Salehizadeh, S. A. Investigation on Calorimetric and Elastic Properties of 50TeO2-(50-x) V2O5-xK2O Glassy Systems. Chalcogenide Lett. 2015, 12, 619–631.
  • Farahmandjou, M.; Behrouzinia, S. Fe Lauded TiO2 Nanoparticles Synthesized by Sol-Gel Precursors. Phys. Chem. Res. 2019, 7, 395–401. DOI: 10.22036/pcr.2019.151365.1546.
  • Farahmandjou, M.; Iskandar, F.; Abdullah, M. The Effect of 1, 2-Hexadecadeniol and LiBEt3H Superhydride on the Size of FePt Nanoparticles. AIP Conference Proc. 2011, 1415, 193–195. DOI: 10.1063/1.3667254.
  • Farahmandjou, M.; Shadrokh, S.; Moghimi, A. Borohydride Reduction of Cobalt Oxide (Co3O4) Nanoparticles. To Phys. J. 2019, 4, 33–39.
  • Farahmandjou, M. Synthesis and Morphology of Face Centered Cubic (FCC) Fe-Pt Nanoparticles. Int. J. Bio-Inorg. Hybrid. Nanomater 2013, 2, 443–447.
  • Behrouzinia, S.; Khorasani, K.; Farahmandjou, M. Buffer Gas Effects on Output Power of a Copper Vapor Laser. Laser Phys. 2016, 26, 055003. DOI: 10.1088/1054-660X/26/5/055003.
  • Khalili, P.; Farahmandjou, M. Study of α-Fe2O3@ZnO Nanoleaves: Morphological and Optical Study. Mater. Eng. Res. 2020, 2, 118–124. DOI: 10.25082/MER.2020.01.004.
  • Khalili, P.; Farahmandjou, M. Nanofabrication of Zinc Ferrite (ZnFe2O4) Composites for Biomedical Application. Transp Phenom Nano Micro Scales 2020, 8, 89–98. DOI: 10.22111/tpnms.2020.35902.1199.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.