155
Views
4
CrossRef citations to date
0
Altmetric
Articles

Nano-Fe3O4/In: a heterogeneous magnetic nanocatalyst for synthesis of tetrazole derivatives under solvent-free conditions

, &
Pages 1050-1058 | Received 21 Oct 2020, Accepted 25 Nov 2021, Published online: 10 Feb 2022

References

  • Laird, T. 2012 Green Chemistry is Good Process Chemistry. Org. Res. Dev. 2012, 16, 1–2. DOI: 10.1021/op200366y, DOI: 10.1021/op200366y.
  • Tisseh, Z. N.; Dabiri, M.; Nobahar, M.; Khavasi, H. R.; Bazgir, A. Catalyst-Free, Aqueous and Highly Diastereoselective Synthesis of New 5-Substituted 1H-Tetrazoles via a Multi-Component Domino Knoevenagel Condensation/1, 3 Dipolar Cycloaddition Reaction. Tetrahedron 2012, 68, 1769–1773. DOI: 10.1016/j.tet.2011.12.044.
  • Manabe, K.; Mori, Y.; Wakabayashi, T.; Nagayama, S.; Kobayashi, S. Organic Synthesis inside Particles in Water: lewis Acid − Surfactant-Combined Catalysts for Organic Reactions in Water Using Colloidal Dispersions as Reaction Media. J. Am. Chem. Soc. 2000, 122, 7202–7207. DOI: 10.1021/ja001420r.
  • Koukabi, N.; Kolvari, E.; Khazaei, A.; Zolfigol, M. A.; Shirmardi-Shaghasemi, B.; Khavasi, H. R. Hantzsch Reaction on Free nano-Fe2O3 Catalyst: excellent Reactivity Combined with Facile Catalyst Recovery and Recyclability. Chem. Commun. 2011, 47, 9230–9232. DOI: 10.1039/c1cc12693h.
  • Arabian, R.; Ramazani, A.; Mohtat, B.; Azizkhani, V.; Joo, S. W.; Rouhani, M. A Convenient and Efficient Protocol for the Synthesis of HBIW Catalyzed by Silica Nanoparticles under Ultrasound Irradiation. J. Energetic Mater. 2014, 32, 300–305. DOI: 10.1080/07370652.2013.869637.
  • Gupta, A. K.; Gupta, M. Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications. Biomaterials 2005, 26, 3995–4021. DOI: 10.1016/j.biomaterials.2004.10.012.
  • Mornet, S.; Vasseur, S.; Grasset, F.; Veverka, P.; Goglio, G.; Demourgues, A.; Portier, J.; Pollert, E.; Duguet, E. Magnetic Nanoparticle Design for Medical Applications. Prog. Solid State Chem. 2006, 34, 237–247. DOI: 10.1016/j.progsolidstchem.2005.11.010.
  • Bakhshayesh, S.; Dehghani, H. Synthesis of Magnetite-Porphyrin Nanocomposite and Its Application as a Novel Magnetic Adsorbent for Removing Heavy Cations. Mater. Res. Bull. 2013, 48, 2614–2624. DOI: 10.1016/j.materresbull.2013.03.019.
  • Chikazumi, S.; Taketomi, S.; Ukita, M.; Mizukami, M.; Miyajima, H.; Setogawa, M.; Kurihara, Y. Physics of Magnetic Fluids. J. Magn. Magn. Mater. 1987, 65, 245–251. DOI: 10.1016/0304-8853(87)90043-6.
  • Lu, A. H.; Salabas, E. L.; Schüth, F. Magnetic Nanoparticles: synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244. DOI: 10.1002/anie.200602866.
  • Hyeon, T. Chemical Synthesis of Magnetic Nanoparticles. Chem. Commun. 2003, 927–934. DOI: 10.1039/b207789b.
  • Tsang, S. C.; Caps, V.; Paraskevas, I.; Chadwick, D.; Thompsett, D. Magnetically Separable, Carbon‐Supported Nanocatalysts for the Manufacture of Fine Chemicals. Angew. Chem. 2004, 116, 5763–5767. DOI: 10.1002/ange.200460552.
  • Taghavi Fardood, S.; Ramazani, A.; Golfar, Z.; Joo, S. W. Green Synthesis of Ni‐Cu‐Zn Ferrite Nanoparticles Using Tragacanth Gum and Their Use as an Efficient Catalyst for the Synthesis of Polyhydroquinoline Derivatives. Appl. Organometal. Chem. 2017, 31, e3823. DOI: 10.1002/aoc.3823.
  • Fekri, L. Z.; Nikpassand, M.; Shariati, S.; Aghazadeh, B.; Zarkeshvari, R.; Norouz Pour, N. Synthesis and Characterization of Amino Glucose-Functionalized Silica-Coated NiFe2O4 Nanoparticles: A Heterogeneous, New and Magnetically Separable Catalyst for the Solvent-Free Synthesis of 2, 4, 5–Trisubstituted Imidazoles, Benzo [d] Imidazoles, Benzo [d] Oxazoles and Azo-Linked Benzo [d] Oxazoles. J. Organomet. Chem. 2018, 871, 60–73. DOI: 10.1016/j.jorganchem.2018.07.008.
  • Zare Fekri, L.; Darya-Laal, A.-R. NiFe2O4@ SiO2@ Amino Glucose Magnetic Nanoparticle as a Green, Effective and Magnetically Separable Catalyst for the Synthesis of Xanthene-Ones under Solvent-Free Condition. Polycyclic Aromat. Compd. 2020, 40, 1539–1556. DOI: 10.1080/10406638.2018.1559207.
  • Fardood, S. T.; Ramazani, A.; Golfar, Z.; Joo, S. Green Synthesis Using Tragacanth Gum and Characterization of Ni–Cu–Zn Ferrite Nanoparticles as a Magnetically Separable Catalyst for the Synthesis of Hexabenzylhexaazaisowurtzitane under Ultrasonic Irradiation. J. Struct. Chem. 2018, 59, 1730–1736. DOI: 10.1134/S0022476618070296.
  • Aghahosseini, H.; Ramazani, A.; Ślepokura, K.; Lis, T. The First Protection-Free Synthesis of Magnetic Bifunctional l-Proline as a Highly Active and Versatile Artificial Enzyme: synthesis of Imidazole Derivatives. J. Colloid Interface Sci. 2018, 511, 222–232. DOI: 10.1016/j.jcis.2017.10.020.
  • Eshtehardian, B.; Rouhani, M.; Mirjafary, Z. Green Protocol for Synthesis of MgFe 2 O 4 Nanoparticles and Study of Their Activity as an Efficient Catalyst for the Synthesis of Chromene and Pyran Derivatives under Ultrasound Irradiation. J. Iran. Chem. Soc. 2020, 17, 469–481. DOI: 10.1007/s13738-019-01783-3.
  • Z Fekri, L.; Nikpassand, M.; H Pour, K. Green Aqueous Synthesis of Mono, Bis and Trisdihydropyridines Using Nano Fe3O4 under Ultrasound Irradiation. COS 2015, 12, 76–79. DOI: 10.2174/1570179411666140806005614.
  • Nikpassand, M.; Fekri, L. Z.; Sanagou, S. Green Synthesis of 2-Hydrazonyl-4-Phenylthiazoles Using KIT-6 Mesoporous Silica Coated Magnetite Nanoparticles. Dyes Pigm. 2017, 136, 140–144. DOI: 10.1016/j.dyepig.2016.08.044.
  • Pathipati, S. R.; van der Werf, A.; Selander, N. Indium (III)-Catalyzed Transformations of Alkynes: recent Advances in Carbo-and Heterocyclization Reactions. Synthesis 2017, 49, 4931–4941. DOI: 10.1055/s-0036-1588555.
  • Fekri, L. Z.; Maleki, R. KIT‐6 Mesoporous Silica‐Coated Magnetite Nanoparticles: A Highly Efficient and Easily Reusable Catalyst for the Synthesis of Benzo [d] Imidazole Derivatives. J. Heterocyclic Chem. 2017, 54, 1167–1171. DOI: 10.1002/jhet.2686.
  • Bakherad, M.; Doosti, R.; Keivanloo, A.; Gholizadeh, M.; Jadidi, K. Rapid, Green, and Catalyst-Free One-Pot Three-Component Syntheses of 5-Substituted 1 H-Tetrazoles in Magnetized Water. J. Iran. Chem. Soc. 2017, 14, 2591–2597. DOI: 10.1007/s13738-017-1193-y.
  • Ramazani, A.; Nasrabadi, F. Z.; Ślepokura, K.; Lis, T.; Joo, S. W. Regioselective and Stereoselective Addition of Tetrazole Derivatives to Electron‐Poor Acetylenic Esters in the Presence of Triphenylphosphine. J. Heterocyclic Chem. 2017, 54, 55–64. DOI: 10.1002/jhet.2539.
  • Rezaei, A.; Akhavan, O.; Hashemi, E.; Shamsara, M. Toward Chemical Perfection of Graphene-Based Gene Carrier via Ugi Multicomponent Assembly Process. Biomacromolecules 2016, 17, 2963–2971. DOI: 10.1021/acs.biomac.6b00767.
  • Akbarzadeh, P.; Koukabi, N.; Kolvari, E. Three-Component Solvent-Free Synthesis of 5-Substituted-1 H-Tetrazoles Catalyzed by Unmodified Nanomagnetite with Microwave Irradiation or Conventional Heating. Res. Chem. Intermed. 2019, 45, 1009–1024. DOI: 10.1007/s11164-018-3657-9.
  • Prajapti, S. K.; Nagarsenkar, A.; Babu, B. N. An Efficient Synthesis of 5-Substituted 1H-Tetrazoles via B (C6F5) ) Catalyzed [3 + 2] Cycloaddition of Nitriles and Sodium Azide. Tetrahedron Lett. 2014, 55, 3507–3510. DOI: 10.1016/j.tetlet.2014.04.089.
  • Darabi, M.; Tamoradi, T.; Ghadermazi, M.; Ghorbani-Choghamarani, A. A Magnetically Retrievable Heterogeneous Copper Nanocatalyst for the Synthesis of 5-Substituted Tetrazoles and Oxidation Reactions. Transit. Met. Chem. 2017, 42, 703–710. DOI: 10.1007/s11243-017-0177-1.
  • Rostom, S. A.; Ashour, H. M.; Abd El Razik, H. A.; Abd El Fattah, H.; El-Din, N. N. Azole Antimicrobial Pharmacophore-Based Tetrazoles: synthesis and Biological Evaluation as Potential Antimicrobial and Anticonvulsant Agents. Bioorganic & Medicinal Chemistry 2009, 17, 2410–2422. DOI: 10.1016/j.bmc.2009.02.004.
  • Abdel‐Aal, M. T.; El‐Sayed, W. A.; El‐Kosy, S. M.; El‐Ashry, E. S. H. Synthesis and Antiviral Evaluation of Novel 5‐(N‐Aryl‐Aminomethyl‐1, 3, 4‐Oxadiazol‐2‐yl) ) drazines and Their Sugars, 1, 2, 4‐Triazoles, Tetrazoles and Pyrazolyl Derivatives. Archiv der Pharmazie Int. J. Pharm. Med. Chem. 2008, 341, 307–313.
  • Safaei-Ghomi, J.; Paymard-Samani, S.; Zahedi, S.; Shahbazi-Alavi, H. Sonochemical Synthesis of 5-Substituted 1H-Tetrazoles Catalyzed by ZrP2O7 Nanoparticles and Regioselective Conversion into New 2, 5-Disubstituted Tetrazoles. Zeitschrift für Naturforschung B 2015, 70, 819–828. DOI: 10.1515/znb-2015-0070.
  • Sauer, J.; Huisgen, R.; Sturm, H. Zur Acylierung Von 5-Aryl-Tetrazolen; Ein Duplikationsverfahren Zur Darstellung Von Polyarylen. Tetrahedron 1960, 11, 241–251. DOI: 10.1016/S0040-4020(01)93173-4.
  • Asghari, S.; Mohammadnia, M. Synthesis and Characterization of Pyridine-4-Carboxylic Acid Functionalized Fe 3 O 4 Nanoparticles as a Magnetic Catalyst for Synthesis of Pyrano [3, 2-b] Pyranone Derivatives under Solvent-Free Conditions. Res. Chem. Intermed. 2016, 42, 1899–1911. DOI: 10.1007/s11164-015-2124-0.
  • Parouch, A. N.; Koukabi, N.; Abdous, E. Tetrazole Derivatives Synthesis Using Fe 3 O 4@ fibroin-SO 3 H as a Magnetically Separable Green Solid Acid Nanocatalyst under Solvent-Free Conditions. Res. Chem. Intermed. 2020, 46, 3295–3310. DOI: 10.1007/s11164-020-04131-w.
  • Tamoradi, T.; Mehraban-Esfandiari, B.; Ghadermazi, M.; Ghorbani-Choghamarani, A. Immobilization of a Nickel Complex onto Functionalized Fe 3 O 4 Nanoparticles: A Green and Recyclable Catalyst for Synthesis of 5-Substituted 1H-Tetrazoles and Oxidation Reactions. Res. Chem. Intermed. 2018, 44, 1363–1380. DOI: 10.1007/s11164-017-3172-4.
  • Khaghaninejad, S.; Heravi, M. M.; Hosseinnejad, T.; Oskooie, H. A.; Bakavoli, M. Regio-Selective Synthesis of 5-Substituted 1H-Tetrazoles Using Ionic Liquid [BMIM] N 3 in Solvent-Free Conditions: A Click Reaction. Res. Chem. Intermed. 2016, 42, 1593–1610. DOI: 10.1007/s11164-015-2105-3.
  • Safaei-Ghomi, J.; Paymard-Samani, S. Facile and Rapid Synthesis of 5-Substituted 1H-Tetrazoles via a Multicomponent Domino Reaction Using Nickel (II) ) ide Nanoparticles as Catalyst. Chem. Heterocycl. Comp. 2015, 50, 1567–1574. DOI: 10.1007/s10593-014-1625-x.
  • Arghan, M.; Koukabi, N.; Kolvari, E. Polyvinyl Amine as a Modified and Grafted Shell for Fe3O4 Nanoparticles: As a Strong Solid Base Catalyst for the Synthesis of Various Dihydropyrano [2, 3-c] Pyrazole Derivatives and the Knoevenagel Condensation. J. Saudi Chem. Soc. 2019, 23, 150–161. DOI: 10.1016/j.jscs.2018.05.008.
  • Chidambaram, S.; Pari, B.; Kasi, N.; Muthusamy, S. ZnO/Ag Heterostructures Embedded in Fe3O4 Nanoparticles for Magnetically Recoverable Photocatalysis. J. Alloys Compd. 2016, 665, 404–410. DOI: 10.1016/j.jallcom.2015.11.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.