118
Views
1
CrossRef citations to date
0
Altmetric
Articles

Macrophytic waste optimization by synthesis of silver nanoparticles and exploring their agro-fungicidal activity

, ORCID Icon, &
Pages 257-266 | Received 12 Feb 2021, Accepted 25 Nov 2021, Published online: 08 Feb 2022

References

  • Phogat, N.; Ali Khan, S.; Shankar, S.; A. Ansary, A.; Uddin, I. Uddin, I. Fate of Inorganic Nanoparticles in Agriculture. Adv. Mater. Lett. 2016, 7, 3–12. DOI: 10.5185/amlett.2016.6048.
  • Sharma, G.; Naushad, M.; Al-Muhtaseb, A. H.; Kumar, A.; Khan, M. R.; Kalia, S.,S.; Bala, M.; Sharma, A. Fabrication and Characterization of Chitosan-Crosslinked-Poly (Alginic Acid) Nanohydrogel for Adsorptive Removal of Cr (VI) Metal Ion from Aqueous Medium. Int. J. Biol. Macromol. 2017, 95, 484–493. DOI: 10.1016/j.ijbiomac.2016.11.072.
  • Fernandez, A.; Picouet, P.; Lloret, E. Cellulose-Silver Nanoparticle Hybrid Materials to Control Spoilage-Related Microflora in Absorbent Pads Located in Trays of Fresh-Cut Melon. Int. J. Food Microbiol. 2010, 142, 222–228. DOI: 10.1016/j.ijfoodmicro.2010.07.001.
  • Popko, J. T.; Ok, C.; Campbell-Nelson, K.; Jung, G. The Association between in Vitro Propiconazole Sensitivity and Field Efficacy of Five New England Sclerotinia Homoeocarpa Populations. Plant Dis. 2012, 96, 552–561. DOI: 10.1094/PDIS-06-11-0524.
  • Sang, H.; Hulvey, J.; Popko, J. T.; Lopes, J.; Swaminathan, A.; Chang, T.; Jung, G. A Pleiotropic Drug Resistance Transporter is Involved in Reduced Sensitivity to Multiple Fungicide Classes in Sclerotinia Homoeocarpa (F.T. Bennett). Mol. Plant Pathol. 2015, 16, 251–261. DOI: 10.1111/.mpp.12174.
  • Goffeau, A. Drug Resistance: The Fight against Fungi. Nature 2008, 452, 541–542. DOI: 10.1038/452541a.
  • Lee, K.-J.; Park, S.-H.; Govarthanan, M.; Hwang, P.-H.; Seo, Y.-S.; Cho, M.; Lee, W.-H.; Lee, J.-Y.; Kamala-Kannan, S.; Oh, B.-T. Synthesis of Silver Nanoparticles Using Cow Milk and Their Antifungal Activity against Phytopathogens. Mater. Lett. 2013, 105, 128–131. DOI: 10.1016/j.matlet.2013.04.076.
  • Dang, T. M. D.; Le, T. T. T.; Blanc, E. F.; Dang, M. C. Synthesis and Optical Properties of Copper Nanoparticles Prepared by a Chemical Reduction Method. Adv. Nat. Sci: Nanosci. Nanotechnol. 2011, 2, 015009. DOI: 10.1088/2043-6262/2/1/015009.
  • Jo, Y. K.; Kim, B. H.; Jung, G. Antifungal Activity of Silver Ions and Nanoparticles on Phytopathogenic Fungi. Plant Dis. 2009, 93, 1037–1043. DOI: 10.1094/PDIS-93-10-1037.
  • Panácek, A.; Kolár, M.; Vecerová, R.; Prucek, R.; Soukupová, J.; Krystof, V.; Hamal, P.; Zboril, R.; Kvítek, L. Antifungal Activity of Silver Nanoparticles against Candida Spp. Biomaterials 2009, 30, 6333–6340. DOI: 10.1016/j.biomaterials.2009.07.065.
  • Velmurugan, N.; Kumar, G. G.; Han, S. S.; Nahm, K. S.; Lee, Y. S. Synthesis and Characterization of Potential Fungicidal Silver Nano-Sized Particles and Chitosan Membrane Containing Silver Particles. Iran. Pol. J. 2009, 5, 383–392.
  • Kasprowicz, M. J.; Kozioł, M.; Gorczyca, A. The Effect of Silver Nanoparticles on Phytopathogenic Spores of Fusarium Culmorum. Can. J. Microbiol. 2010, 56, 247–253. DOI: 10.1139/w10-012.
  • Aboelfetoh, E. F.; El-Shenody, R. A.; Ghobara, M. M. Eco-Friendly Synthesis of Silver Nanoparticles Using Green Algae (Caulerpa Serrulata): Reaction Optimization, Catalytic and Antibacterial Activities. Environ. Monit. Assess. 2017, 189, 349. DOI: 10.1007/s10661-017-6033-0.
  • Ramkumar, V. S.; Prakash, S.; Ramasubburayan, R.; Pugazhendhi, A.; Gopalakrishnan, K.; Kannapiran, E.; Rajendran, R. B. Seaweeds: A Resource for Marine Bionanotechnology. Enz. Microb. Technol. 2016, 95, 45–57. DOI: 10.1016/j.enzmictec.2016.06.009.
  • Ahila, N. K.; Ramkumar, V. S.; Prakash, S.; Manikandan, B.; Ravindran, J.; Dhanalakshmi, P. K.; Kannapiran, E. Synthesis of Stable Nanosilver Particles (AgNPs) by the Proteins of Seagrass Syringodium Isoetifolium and Its Biomedicinal Properties. Biomed. Pharmacol. 2016, 84, 60–70. DOI: 10.1016/j.biopha.2016.09.004.
  • Loo, Y. Y.; Chieng, B. W.; Nishibuchi, M.; Radu, S. Synthesis of Silver Nanoparticles by Using Tea Leaf Extract from Camellia Sinensis. Int. J. Nanomed. 2012, 7, 4263. DOI: 10.2147/IJN.S33344.
  • Wildenberg, W. Roadmap Report on Nanoparticles; W& WE spana sl, Barcelona, Spain, 2005, 57.
  • Mohsin, I.; Maria, Z.; Tahir, I. Green Synthesis of Silver Nanoparticles by Using Various Extracts: A Review. Inorg. Nano-Met. Chem. 2021, 51, 744–755. DOI: 10.1080/24701556.2020.1808680.
  • Asmathunisha, N.; Kathiresan, K. A Review on Biosynthesis of Nanoparticles by Marine Organisms. Colloids Surf. B Biointerfaces 2013, 103, 283–287. DOI: 10.1016/j.colsurfb.2012.10.030.
  • Chanthini, A. B.; Balasubramani, G.; Ramkumar, R.; Sowmiya, R.; Balakumaran, M. D.; Kalaichelvan, P. T.; Perumal, P. Structural Characterization, Antioxidant and In Vitro Cytotoxic Properties of Seagrass, Cymodocea serrulata (R.Br.) Asch. & Magnus Mediated Silver Nanoparticles. J. Photochem. Photobiol. B 2015, 153, 145–152. DOI: 10.1016/j.jphotobiol.2015.09.014.
  • Bharathi, N. P.; Vanitha, V. Phytochemistry and Ethnopharmacology of the Seagrass Cymodoceaceae Family – a Review. Asian J. Pharm. Clin. Res. 2017, 10, 19–23. DOI: 10.22159/ajpcr.2017.v10i6.18078.
  • Santoso, J.; Podungge, F.; Sumaryanto, H. Chemical Composition and Antioxidant Activity of Tropical Brown Algae Padina Australis from Pramuka Island, District of Seribu Island, Indonesia. J. Ilmu Dan Teknologi Kelautan Tropis 2013, 5, 287–297. DOI: 10.28930/jitkt.v5i2.7558.
  • Jaswir, I.; Noviendri, D.; Salleh, H. M.; Taher, M.; Miyashita, K. Isolation of Fucoxanthin and Fatty Acids Analysis of Padina Australis and Cytotoxic Effect of Fucoxanthin on Human Lung Cancer (H1299) Cell Lines. Afr. J. Biotechnol. 2011, 10, 18855–18862. DOI: 10.5897/AJB11.2765.
  • Wei, C. C.; Ling, H. S.; Lee, W. C. Antibacterial Activity of Sargassum Polycystum C. Agardh and Padina Australis Hauck (Phaeophyceae). Afr. J. Biotechnol. 2011, 10, 14125–14131. DOI: 10.5897/AJB11.966.
  • Murugan, A. C.; Vallal, D.; Karim, M. R.; Govindan, N.; Yusoff, M. B. M.; Rahman, M. M. In Vitro Antiradical and Neuroprotective Activity of Polyphenolic Extract from Marine Algae Padina Australis H. J. Chem. Pharm. Res. 2015, 7, 355–362.
  • Kuo, J.; Hartog, C. D. Seagrass Taxonomy and Identification Key. In Global Seagrass Research Methods, Short, F. T., Coles, R. G., Eds.; Elsevier Science: B.V Amsterdam, 2001; pp 31–58.
  • Umamaheswara, R. M. Key for Identification of Economically Important Seaweeds. CMFRI Bull. 1987, 41, 19–25.
  • Vijayan, S. R.; Santhiyagu, P.; Singamuthu, M.; Ahila, K.; Jayaraman, N.; Kannapiran, E. Synthesis and Characterization of Silver and Gold Nanoparticles Using Aqueous Extract of Seaweed, Turbinaria Conoides, and Their antimicrofouling activity. Sci. World J. 2014, 2014, 938272. DOI: 10.1155/2014/938272.
  • Prasad, T. N. V. K.; Elumalai, E. K. Biofabrication of Ag Nanoparticles Using Moringa Oleifera Leaf Extract and Their Antimicrobial Activity. Asian Pac. J. Trop. Biomed. 2011, 1, 439–442. DOI: 10.1016/S2221-1691(11)60096-8.
  • Perez, C.; Paul, M.; Bazerque, P. Antibiotic Assay by Agar Well Diffusion Method. Acta. Biol. Med. Exp. 1990, 15, 113–111.
  • Park, J. H.; Choi, G. J.; Jang, K. S.; Lim, H. K.; Kim, H. T.; Cho, K. W.; Kim, J. C. Antifungal Activity against Plant Pathogenic Fungi of Chaetoviridins Isolated from Chaetomium Globosum. FEMS Microbiol. Lett. 2005, 252, 309–313. DOI: 10.1016/j.femsle.2005.09.013.
  • Shankar, S. S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid Synthesis of Au, Ag, and Bimetallic Au core-Ag Shell Nanoparticles Using Neem (Azadirachta Indica) Leaf Broth. J. Col. Inter. Sci. 2004, 275, 496–502. DOI: 10.1016/j.jcis.2004.03.003.
  • Rajathi, F. A. A.; Parthiban, C.; Ganesh Kumar, V.; Anantharaman, P. Biosynthesis of Antibacterial Gold Nanoparticles Using Brown Alga, Stoechospermum Marginatum (k¨ Utzing). Spectrochim. Acta A 2012, 99, 166–173. DOI: 10.1016/j.saa.2012.08.081.
  • Senthilkumar, P.; Santhosh Kumar, D. S. R.; Sudhagar, B.; Vanthana, M.; Parveen, M. H.; Sarathkumar, S.; Thomas, J. C.; Mary, A. S.; Kannan, C. Seagrass-Mediated Silver Nanoparticles Synthesis by Enhalus Acoroides and Its a-Glucosidase Inhibitory Activity from the Gulf of Mannar. J. Nanostruct. Chem. 2016, 6, 275–280. DOI: 10.1007/s40097-016-0200-7.
  • Hashemi, S.; Givianrad, M. H.; Moradi, A. M.; Larijani, K. Biosynthesis of Silver Nanoparticles Using Brown Marine Seaweed Padina Boeregeseni and Evaluation of Physico-Chemical Factors. Ind. J. Geo Mar. Sci. 2015, 44, 1415–1421.
  • Rajeshkumar, S.; Malarkodi, C.; Paulkumar, K.; Vanaja, M.; Gnanajobitha, G.; Annadurai, G. Algae Mediated Green Fabrication of Silver Nanoparticles and Examination of Its Antifungal Activity against Clinical Pathogens. Int. J. Met. 2014, 2014, 1–8. DOI: 10.1155/2014/692643.
  • Tripathi, R. M.; Saxena, A.; Gupta, N.; Kapoor, H.; Singh, R. P. High Antibacterial Activity of Silver Nanoballs against E. coli MTCC 1302, S. typhimurium MTCC 1254, B. subtilis MTCC 1133 and P. aeruginosa MTCC 2295. Dig. J. Nanomater. Biostruct. 2010, 5, 323–330.
  • Aragao, A. P.; Oliveira, T. M.; Quelemes, P. V.; Perfeito, M. L. G.; Arau ’Jo, M. C.; Santiago, J. A. S.; Cardoso, V. S.; Quaresma, P.; Leite, J. R. A.; Silva, D. A. Green Synthesis of Silver Nanoparticles Using the Seaweed Gracilaria Birdiae and Their Antibacterial Activity. Arab. J. Chem. 2019, 12, 4182–4188. DOI: 10.1016/j.arabjc.2016.04.014.
  • Mahyoub, J. A.; Aziz, A. T.; Panneerselvam, C.; Murugan, K.; Roni, M.; Trivedi, S.; Nicoletti, M.; Hawas, U. W.; Shaher, F. M.; Bamakhrama, M. A.; et al. Seagrasses as Sources of Mosquito Nano- Larvicides? Toxicity and Uptake of Halodule uninervis-Biofabricated Silver Nanoparticles in Dengue and Zika Virus Vector Aedes aegypti. J. Clust. Sci. 2017, 28, 565–580. DOI: 10.1007/s10876-016-1127-3.
  • Kulkarni, N.; Muddapur, U. Biosynthesis of Metal Nanoparticles: A Review. J. Nanotechnol. 2014, 2014, 1–8. DOI: 10.1155/2014/510246.
  • Makarov, V.; Love, A.; Sinitsyna, O.; Makarova, S.; Yaminsky, I.; Talian Sky, M.; Kalinina, N. Green Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants. Acta. Naturae 2014, 6, 1–20.
  • Shanmugam, N.; Rajkamal, P.; Cholan, S.; Kannadasan, N.; Sathishkumar, K.; Viruthagiri, G.; Sundaramanickam, A. Biosynthesis of Silver Nanoparticles from the Marine Seaweed Sargassum Wightii and Their Antibacterial Activity against Some Human Pathogens. Appl. Nanosci. 2014, 4, 881–888. DOI: 10.1007/s13204-013-0271-4.
  • Karthik, R.; Chen, S.-M.; Elangovan, A.; Muthukrishnan, P.; Shanmugam, R.; Lou, B.-S. Phyto Mediated Biogenic Synthesis of Gold Nanoparticles Using Cerasus Serrulata and Its Utility in Detecting Hydrazine, Microbial Activity and DFT studies. J. Colloid Interface Sci. 2016, 468, 163–175. DOI: 10.1016/j.jcis.2016.01.046.
  • Prasad, T. N. V. K. V.; Kambala, V. S. R.; Naidu, R. Phyconanotechnology: synthesis of Silver Nanoparticles Using Brown Marine Algae Cystophora Moniliformis and Their Characterization. J. Appl. Phycol. 2013, 25, 177–182. DOI: 10.1007/s10811-012-9851-z.
  • Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B.; Muthumary, J.; Srinivasan, K. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 594–598. DOI: 10.1016/j.saa.2011.03.040.
  • Rajaganesh, R.; Murugan, K.; Panneerselvam, C.; Jayashanthini, S.; Aziz, A. T.; Roni, M.; Suresh, U.; Trivedi, S.; Rehman, H.; Higuchi, A.; et al. Fern-Synthesized Silver Nanocrystals: Towards a New Class of Mosquito Oviposition Deterrents? Res. Vet. Sci. 2016, 109, 40–51. DOI: 10.1016/j.rvsc.2016.09.012.
  • Panneerselvam, C.; Murugan, K.; Roni, M.; Aziz, A. T.; Suresh, U.; Rajaganesh, R.; Madhiyazhagan, P.; Subramaniam, J.; Dinesh, D.; Nicoletti, M.; et al. Fern-Synthesized Nanoparticles in the Fight against Malaria: LC/MS Analysis of Pteridium Aquilinum Leaf Extract and Biosynthesis of Silver Nanoparticles with High Mosquitocidal and Antiplasmodial Activity. Parasitol. Res. 2016, 115, 997–1013. DOI: 10.1007/s00436-015-4828-x.
  • Ponmurugan, P.; Manjukarunambika, K.; Elango, V.; Gnanamangai, B. M. Antifungal Activity of Biosynthesised Copper Nanoparticles Evaluated against Red Root-Rot Disease in Tea Plants. J. exp. Nanosci. 2016, 11, 1019–1031. DOI: 10.1080/17458080.2016.1184766.
  • Krishnaraj, C.; Jagan, E. G.; Ramachandran, R.; Abirami, S. M.; Mohan, N.; Kalaichelvan, P. T. Effect of Biologically Synthesized Silver Nanoparticles on Bacopa Monnieri (Linn.) Wettst. plant Growth Metabolism. Proc. Biochem. 2012, 47, 651–658. DOI: 10.1016/j.procbio.2012.01.006.
  • Balashanmugam, P.; Balakumaran, M. D.; Murugan, R.; Dhanapal, K.; Kalaichelvan, P. T. Phytogenic Synthesis of Silver Nanoparticles, Optimization and Evaluation of in Vitro Antifungal Activity against Human and Plant Pathogens. Microbiol. Res. 2016, 192, 52–64. DOI: 10.1016/j.micres.2016.06.004.
  • Ouda, S. M. Antifungal Activity of Silver and Copper Nanoparticles on Two Plant Pathogens, Alternaria alternata and Botrytis cinerea. Res. J. Microbiol. 2014, 9, 34–42. DOI: 10.3923/jm.2014.34.42.
  • Amna, M.,T.; Khan, U. N.; Amin, B.; Javed, M. T.; Mehmood, S.; Farooq, M. A.; Sultan, T.; Munis, M. F. H.; Chaudhary, H. J. Characterization of Bio-Fabricated Silver Nanoparticles for Distinct anti-Fungal Activity against Sugarcane Phytopathogens. Microsc. Res. Tech. 2021, 84, 1522–1530. DOI: 10.1002/jemt.23708.
  • Teimoori, B. B.; Nikparast, Y.; Hojatianfar, M.; Akhlaghi, M.; Ghorbani, R.; Pourianfar, H. R. Characterisation and Antifungal Activity of Silver Nanoparticles Biologically Synthesised by Amaranthus Retroflexus Leaf Extract. J. Exp. Nanosci. 2017, 12, 129–139. DOI: 10.1080/17458080.2017.1279355.
  • Pushpabharathi, N.; Jayalakshmi, M.; Amudha, P.; Vanitha, V. Identification of Bioactive Compounds in Cymodocea serrulata-A Seagrass by Gas Chromatography–Mass Spectroscopy. Asian J Pharm. Clin. Res. 2018, 11, 317. DOI: 10.22159/ajpcr.2018.v11i9.26744.
  • Iyapparaj, P.; Revathi, P.; Ramasubburayan, R.; Prakash, S.; Palavesam, A.; Immanuel, G.; Anantharaman, P.; Sautreau, A.; Hellio, C. Antifouling and Toxic Properties of the Bioactive Metabolites from the Seagrasses Syringodium Isoetifolium and Cymodocea Serrulata. Ecotoxicol. Environ. Saf. 2014, 103, 54–60. DOI: 10.1016/j.ecoenv.2014.02.009.
  • Haryani, T. S.; Lohitasari, B. Triastinurmiatiningsih, Toxicity and Compound Identification of Padinaaustralis Extract. Toxicity and Compound Identification of Padina Australis Extract. Int. J. Rec. Tech. Eng. 2019, 8, 2277–3878. DOI: 10.35940/ijrte.B1016.0782S719.
  • Latifah, L. A.; Soekamto, N. H.; Tahir, A. Preliminary Study: Padina Australis Hauck's Antibacterial Activity and Phytochemical Test against Pathogenic Shrimp Bacteria. J. Phys: Conf. Ser. 2019, 1341, 022005. DOI: 10.1088/1742-6596/1341/2/022005.
  • Yoo-Iam, M.; Chaichana, R.; Satapanajaru, T. Toxicity, Bioaccumulation and Biomagnification of Silver Nanoparticles in Green Algae (Chlorella sp.), Water Flea (Moina Macrocopa), Blood Worm (Chironomus Spp.) and Silver Barb (Barbonymus Gonionotus). Chem. Spec. Bioavail. 2014, 26, 257–265. DOI: 10.3184/095422914X14144332205573.
  • Fabrega, J.; Luoma, S. N.; Tyler, C. R.; Galloway, T. S.; Lead, J. R. Silver Nanoparticles: Behaviour and Effects in the Aquatic Environment. Environ. Int. 2011, 37, 517–531. DOI: 10.1016/j.envint.2010.10.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.