142
Views
0
CrossRef citations to date
0
Altmetric
Articles

Novel synthesis of Cu–ZnO heterostructure for photoelectric, medicinal, and sun-light dye degradative applications

, , &
Pages 1214-1225 | Received 08 Oct 2021, Accepted 16 Jan 2022, Published online: 09 Mar 2022

References

  • Naz, F.; Saeed, K. Investigation of Photocatalytic Behavior of Undoped ZnO and Cr-Doped ZnO Nanoparticles for the Degradation of Dye. Inorganic Nano-Metal Chem. 2021, 51, 1–11. DOI: 10.1080/24701556.2020.1749657.
  • Wetchakun, N.; Phanichphant, S. Effect of Temperature on the Degree of Anatase–Rutile Transformation in Titanium Dioxide Nanoparticles Synthesized by the Modified Sol–Gel Method. Curr. Appl. Phys. 2008, 8, 343–346. DOI: 10.1016/j.cap.2007.10.028.
  • Su, C.; Hong, B.-Y.; Tseng, C.-M. Sol–Gel Preparation and Photocatalysis of Titanium Dioxide. Catal. Today 2004, 96, 119–126. DOI: 10.1016/j.cattod.2004.06.132.
  • Peng, T.; Zhao, D.; Dai, K.; Shi, W.; Hirao, K. Synthesis of Titanium Dioxide Nanoparticles with Mesoporous Anatase Wall and High Photocatalytic Activity. J. Phys. Chem. B 2005, 109, 4947–4952. DOI: 10.1021/jp044771r.
  • Mahshid, S.; Askari, M.; Ghamsari, M. S. Synthesis of TiO2 Nanoparticles by Hydrolysis and Peptization of Titanium Isopropoxide Solution. J. Mater. Process. Technol. 2007, 189, 296–300. DOI: 10.1016/j.jmatprotec.2007.01.040..
  • Hosseini, M.; Abad, S. N. K.; Ilkhechi, N. N.; Mozammel, M.; Eftekhari, N. The Role of Sn–Fe Co-Doping on the Atomic Structure, Phase Transformation and Antibacterial Activity of TiO2 Nanoparticles. Mater. Res. Exp. 2019, 6, 1050c1. DOI: 10.1088/2053-1591/ab4017.
  • Shon, H. K.; Phuntsho, S.; Vigneswaran, S. Effect of Photocatalysis on the Membrane Hybrid System for Wastewater Treatment. Desalin. Water Treat. 2008, 225, 235–248. DOI: 10.1016/j.desal.2007.05.032.
  • Mahmoodi, N. M.; Oveisi, M.; Taghizadeh, A.; Taghizadeh, M. Novel Magnetic Amine Functionalized Carbon Nanotube/Metal-Organic Framework Nanocomposites: From Green Ultrasound-Assisted Synthesis to Detailed Selective Pollutant Removal Modelling from Binary Systems. J. Hazard. Mater. 2019, 368, 746–759. DOI: 10.1016/j.jhazmat.2019.01.107.
  • Mahmoodi, N. M. Equilibrium, Kinetics, and Thermodynamics of Dye Removal Using Alginate in Binary Systems. J. Chem. Eng. Data 2011, 56, 2802–2811. DOI: 10.1021/je101276x.
  • Mahmoodi, N. M. Binary Catalyst System Dye Degradation Using Photocatalysis. Fibers Polym. 2014, 15, 273–280. DOI: 10.1007/s12221-014-0273-1.
  • Mahmoodi, N. M.; Taghizadeh, M.; Taghizadeh, A.; Abdi, J. Bio-Based Magnetic Metal-Organic Framework Nanocomposite: Ultrasound-Assisted Synthesis and Pollutant (Heavy Metal and Dye) Removal from Aqueous Media. Appl. Surf. Sci. 2019, 480, 288–299. DOI: 10.1016/j.apsusc.2019.02.211.
  • Solis, M.; Solis, A.; Perez, H. I.; Manjarrez, N. Eco Friendly Approach for Direct Blue 273 Removal from an Aqueous Medium. Process. Biochem. 2012, 47, 1723–1748. DOI: 10.1016/j.procbio.2012.08.014.
  • Jo, W.; Tayade, R. Recent Developments in Photocatalytic Dye Degradation Upon Irradiation with Energy-Efficient Light Emitting Diodes. Chin. J. Catal. 2014, 35, 1781–1792. DOI: 10.1016/S1872-2067(14)60205-9.
  • Lam, S.; Sin, J.; Abdullah, A.; Mohamed, A. Degradation of Wastewaters Containing Organic Dyes Photocatalysed by Zinc Oxide: A Review. Desalin. Water Treat. 2012, 41, 131–169. [Database] DOI: 10.1080/19443994.2012.664698.
  • Saeed, K.; Ishaq, M.; Sultan, S.; Ahmad, I. Removal of Methyl Violet 2-B from Aqueous Solutions Using Untreated and Magnetite-Impregnated Almond Shell as Adsorbents. Desalin. Water Treat. 2015, 57, 4. DOI: 10.1080/19443994.2015.1058191.
  • Mahmoodi, N. M.; Saffar-Dastgerdi, M. H. Zeolite Nanoparticle as a Superior Adsorbent with High Capacity: Synthesis, Surface Modification and Pollutant Adsorption Ability from Wastewater. Microchem. J. 2019, 145, 74–83. DOI: 10.1016/j.microc.2018.10.018.
  • Abdi, J.; Mahmoodi, N. M.; Vossoughi, M.; Alemzadeh, I. Synthesis of Magnetic Metal-Organic Framework Nanocomposite (ZIF 8@SiO2@MnFe2O4) as a Novel Adsorbent for Selective Dye Removal from Multicomponent Systems. Microporous Mesoporous Mater. 2019, 273, 177–188. DOI: 10.1016/j.micromeso.2018.06.040.
  • Deng, X.; Wang, D.; Li, H.; Jiang, W.; Zhou, T.; Wen, Y.; Yu, B.; Che, G.; Wang, L. Boosting Interfacial Charge Separation and Photocatalytic Activity of 2D/2D g-C3N4/ZnIn2S4 S-Scheme Heterojunction under Visible Light Irradiation Author Links Open Overlay Panel. J. Alloys Compd. 2022, 894, 162209. DOI: 10.1016/j.jallcom.2021.162209.
  • Yan, L.; Hou, J.; Li, T.; Wang, Y.; Liu, C.; Zhou, T.; Jiang, W.; Wang, D.; Che, G. Tremella-Like Integrated Carbon Nitride with Polyvinylimine-Doped for Enhancing Photocatalytic Degradation and Hydrogen Evolution Performances. Sep. Purif. Technol. 2021, 279, 119766. DOI: 10.1016/j.seppur.2021.119766.
  • Wang, W. P.; Yang, H.; Xian, T.; Li, R. S.; Ma, J. Y.; Jiang, J. L. Photocatalytic Degradation of Methyl Red by BaTiO3 Nanoparticles via a Direct Hole Oxidation Mechanism. Adv. Sci. Eng. Med. 2012, 4, 479–483. DOI: 10.1166/asem.2012.1215.
  • Arney, D.; Watkins, T.; Maggard, P. A. Effects of Particle Surface Areas and Microstructures on Photocatalytic H2 and O2 Production over PbTiO3. J. Am. Ceram. Soc. 2011, 94, 1483–1489. DOI: 10.1111/j.1551-2916.2010.04262.x.
  • Kong, J.-Z.; Li, A.-D.; Zhai, H.-F.; Li, H.; Yan, Q.-Y.; Ma, J.; Wu, D. Preparation, Characterization and Photocatalytic Properties of ZnTiO3 Powders. J. Hazard. Mater. 2009, 171, 918–923. DOI: 10.1016/j.jhazmat.2009.06.092.
  • Wang, J.; Zhao, G.; Li, Y.; Zhu, H.; Peng, X.; Gao, X. One-Step Fabrication of Functionalized Magnetic Adsorbents with Large Surface Area and Their Adsorption for Dye and Heavy Metal Ions. Dalton Trans. 2014, 43, 11637–11645. DOI: 10.1039/c4dt00694a.
  • Sun, L.; Tian, C.; Wang, L.; Zou, J.; Mu, G.; Fu, H. Magnetically Separable Porous Graphitic Carbon with Large Surface Area as Excellent Adsorbents for Metal Ions and Dye. J. Mater. Chem. 2011, 21, 7232. DOI: 10.1039/c1jm10470e.
  • Gupta, V. K.; Suhas. Application of Low-Cost Adsorbents for Dye Removal – A Review. J. Environ. Manage. 2009, 90, 2313–2342. DOI: 10.1016/j.jenvman.2008.11.017.
  • Ahmad, A.; Mohd-Setapar, S. H.; Chuong, C. S.; Khatoon, A.; Wani, W. A.; Kumar, R.; Rafatullah, M. Recent Advances in New Generation Dye Removal Technologies: Novel Search for Approaches to Reprocess Wastewater. RSC Adv. 2015, 5, 30801–30818. DOI: 10.1039/C4RA16959J.
  • Zhang, J.; Feng, M.; Jiang, Y.; Hu, M.; Li, S.; Zhai, Q. Efficient Decolorization/Degradation of Aqueous Azo Dyes Using Buffered H2O2 Oxidation Catalyzed by a Dosage Below ppm Level of Chloroperoxidase. Chem. Eng. J. 2012, 191, 236–242. DOI: 10.1016/j.cej.2012.03.009.
  • Nursam, N. M.; Wang, X.; Tan, J. Z.; Caruso, R. A. Probing the Effects of Templating on the UV and Visible Light Photocatalytic Activity of Porous Nitrogen-Modified Titania Monoliths for Dye Removal. ACS Appl. Mater. Interfaces 2016, 8, 17194–17204. DOI: 10.1021/acsami.6b03158.
  • Nuengmatcha, P.; Chanthai, S.; Mahachai, R.; Oh, W.-C. Sonocatalytic Performance of ZnO/Graphene/TiO2 Nanocomposite for Degradation of Dye Pollutants (Methylene Blue, Texbrite BAC-L, Texbrite BBU-L and Texbrite NFW-L) Under Ultrasonic Irradiation. 20 Dyes Pigm. 2016, 134, 487–497. DOI: 10.1016/j.dyepig.2016.08.006.
  • Kamalakkannan, J.; Chandraboss, V. L.; Loganathan, B.; Prabha, S.; Karthikeyan, B.; Senthilvelan, S. TiInCrO6-Nanomaterial Synthesis, Characterization and Multi Applications. Appl. Nanosci. 2016, 6, 691–702. DOI: 10.1007/s13204-015-0474-y.
  • Sood, S.; Mehta, S. K.; Umar, A.; Kansal, S. K. The Visible Light-Driven Photocatalytic Degradation of Alizarin Red S Using Bi-Doped TiO2 Nanoparticles. New J. Chem. 2014, 38, 3127–3136. DOI: 10.1039/C4NJ00179F.
  • Subash, B.; Krishnakumar, B.; Swaminathan, M.; Shanthi, M. Highly Efficient, Solar Active, and Reusable Photocatalyst: Zr-Loaded Ag–ZnO for Reactive Red 120 Dye Degradation with Synergistic Effect and Dye-Sensitized Mechanism. Langmuir 2013, 29, 939–949. DOI: 10.1021/la303842c.
  • Cao, J.; Luo, B. D.; Lin, H. L.; Xu, B. Y.; Chen, S. F. Visible Light Photocatalytic Activity Enhancement and Mechanism of AgBr/Ag3PO4 Hybrids for Degradation of Methyl Orange. J. Hazard. Mater. 2012, 217–218, 107–115. DOI: 10.1016/j.jhazmat.2012.03.002.
  • Chandraboss, V. L.; Kamalakkannan, J.; Senthilvelan, S. Synthesis of Activated Charcoal Supported Bi-Doped TiO2 Nanocomposite under Solar Light Irradiation for Enhanced Photocatalytic Activity. Appl. Surf. Sci. 2016, 387, 944–956. DOI: 10.1016/j.apsusc.2016.06.110.
  • Chen, C.; Xie, Y.; Ali, G.; Yoo, S. H.; Cho, S. O. Improved Conversion Efficiency of Ag2S Quantum Dot-Sensitized Solar Cells Based on TiO2 Nanotubes with a ZnO Recombination Barrier Layer. Nanoscale Res. Lett. 2011, 6, 462–470. DOI: 10.1186/1556-276X-6-462.
  • Subash, B.; Krishnakumar, B.; Sreedhar, B.; Swaminathan, M.; Shanthi, M. Highly Active WO3–Ag–ZnO Photocatalyst Driven by Day Light Illumination. Superlattices Microstruct. 2013, 54, 155–171. DOI: 10.1016/j.spmi.2012.11.009.
  • Krishnakumar, B.; Subash, B.; Swaminathan, M. AgBr–ZnO – An Efficient Nano-Photocatalyst for the Mineralization of Acid Black 1 with UV LightSep. Purif. Technol. 2012, 85, 35–44. DOI: 10.1016/j.seppur.2011.09.037.
  • Qin, Y. H.; Yang, H. H.; Zhang, X. S.; Li, P.; Ma, C. A. Effect of Carbon Nanofibers Microstructure on Electrocatalytic Activities of Pd Electrocatalysts for Ethanol Oxidation in Alkaline Medium. Int. J. Hydrogen Energy 2010, 35, 7667–7674. DOI: 10.1016/j.ijhydene.2010.05.034.
  • Zhao, Y. C.; Zhan, L.; Tian, J. N.; Nie, S. L.; Ning, Z. Enhanced Electrocatalytic Oxidation of Methanol on Pd/Polypyrrole–Graphene in Alkaline Medium. Electrochim. Acta 2011, 56, 1967–1972. DOI: 10.1016/j.electacta.2010.12.005.
  • Liu, J.; Yang, H.; Weiwei, T.; Zhou, X.; Lin, Y. Photovoltaic Performance Improvement of Dye-Sensitized Solar Cells Based on Tantalum-Doped TiO2 Thin Films. Electrochim. Acta 2010, 56, 396–400. DOI: 10.1016/j.electacta.2010.08.063.
  • Zhang, Y.; Wang, L.; Liu, B.; Zhai, J.; Fan, H.; Wang, D.; Lin, Y.; Xie, T. Synthesis of Zn-Doped TiO2 Microspheres With Enhanced Photovoltaic Performance and Application for Dye-Sensitized Solar Cells. Elctrochim. Acta 2011, 56, 6517–6523. DOI: 10.1016/j.electacta.2021.138042.
  • Banerjee, S.; Gopal, J.; Muraleedharan, P.; Tyagi, A. K.; Raj, B. Physics and Chemistry of Photocatalytic Titanium Dioxide: Visualization of Bactericidal Activity Using Atomic Force Microscopy. Curr. Sci. 2006, 90, 1378–1383. www.jstor.org/stable/24091987.
  • Gupta, K.; Singh, R. P.; Pandey, A.; Pandey, A. Photocatalytic Antibacterial Performance of TiO2 and Ag-Doped TiO2 against S. aureus, P. aeruginosa and E. coli. Beilstein J. Nanotechnol. 2013, 4, 345–351. DOI: 10.3762/bjnano.4.40.
  • Ariharan, V. N.; Prasad, P. N. Anti-Bacterial Activity of Three Morphological Traits of Aegle marmelos (Linn.) Corr.-‘Vilvam’ Rasayan. J. Chem. 2014, 7, 260–263.
  • Balachandran, S.; Praveen, S.; Velmurugan, G. R.; Swaminathan, M. Facile Fabrication of Highly Efficient, Reusable Heterostructured Ag–ZnO–CdO and Its Twin Applications of Dye Degradation Under Natural Sunlight and Self-Cleaning. RSC Adv. 2014, 4, 4353–4362. DOI: 10.1039/C3RA45381B.
  • Kamalakkannan, J.; Chandraboss, V. L.; Prabha, S.; Senthilvelan, S. Advanced Construction of Heterostructured InCrO4–TiO2 and Its Dual Properties of Greater UV-Photocatalytic and Antibacterial Activity. RSC Adv. 2015, 5, 77000–77013. DOI: 10.1039/C4RA12453G.
  • Ameta, K.; Tak, P.; Soni, D.; Ameta, S. C. Ameta, Photocatalytic Decomposition of Malachite Green Over Lead Chromate powder. Sci. Rev. Chem. Commun. 2014, 4, 38–45.
  • Saravanabava, J.; Raja, K.; Jayaseelan, R.; Kamalakkannan, J. Sustainable Scientific Advancements Modified Ag ZnO Supported SnFe3O4 Nanocomposite Material Differ-Light Irradiation and Other Application. Mater. Today: Proc. 2021, 47, 332–339. DOI: 10.1016/j.matpr.2021.04.506.
  • Kim, Y.; Atherton, S. J.; Brigham, E. S.; Mallouk, T. E. Sensitized Layered Metal Oxide Semiconductor Particles for Photochemical Hydrogen Evolution from Nonsacrificial Electron Donors. J. Phys. Chem. 1993, 97, 11802–11810. DOI: 10.1021/j100147a038.
  • Nethercot, A. H. Prediction of Fermi Energies and Photoelectric Thresholds Based on Electronegativity Concepts. Phys. Rev. Lett. 1974, 33, 1088–1091. DOI: 10.1103/PhysRevLett.33.1088.
  • Fujishima, A.; Zhang, X. Titanium Dioxide Photocatalysis: Present Situation and Future Approaches. C. R. Chim. 2006, 9, 750–760. DOI: 10.1016/j.crci.2005.02.055.
  • Vasiljevic, Z. Z.; Dojcinovic, M. P.; Vujancevic, J. D.; Jankovic-Castvan, I.; Ognjanovic, M.; Tadic, N. B.; Stojadinovic, S.; Brankovic, G. O.; Nikolic, M. V. Photocatalytic Degradation of Methylene Blue under Natural Sunlight Using Iron Titanate Nanoparticles Prepared by a Modified Sol–Gel Method. R. Soc. Open Sci. 2020, 7, 200708. DOI: 10.1098/rsos.200708.
  • Subash, B.; Krishnakumar, B.; Swaminathan, M.; Shanthi, M. Highly Active Zr Co-Doped Ag–ZnO Photocatalyst for the Mineralization of Acid Black 1 under UV-a Light Illumination. Mater. Chem. Phys. 2013, 141, 114–120. DOI: 10.1016/j.matchemphys.2013.04.033.
  • Chatterjee, S.; Tyagi, A. K.; Ayyub, P. Efficient Photocatalytic Degradation of Rhodamine B Dye by Aligned Arrays of Self-Assembled Hydrogen Titanate Nanotubes. J. Nanomater. 2014, Article ID 328618, 7. DOI: 10.1155/2014/328618.
  • Selvakumar, G.; Palanivel, C. A Study on Synthesis, Characterization and Catalytic Applications of MoO3–ZnO Nanocompositematerial. Mater. Sci. Energy Technol. 2022, 5, 36–44. DOI: 10.1016/j.mset.2021.11.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.