257
Views
1
CrossRef citations to date
0
Altmetric
Articles

Biologically active mixed ligand complexes of Co(II), Ni(II), Cu(II) and Zn(II) as potential antimalarial, antidibetic and anticancer agents

, &
Pages 1234-1242 | Received 10 Jun 2021, Accepted 16 Jan 2022, Published online: 23 Feb 2022

References

  • Jevtovic, V.; Ivkovic, S.; Kaisarevic, S.; Kovacevic, R. Anticancer Activity of New Copper (II) Complexes Incorporating a Pyridoxal-Semicarbazone Ligand. Contemp. Mater. 2010, 1, 133–137. DOI: 10.5767/anurs.cmat.100102.en.133J.
  • Zhang, H.; Yuetao, Y.; Dawei, F.; Yipeng, W.; Song, Q. Hypoglycemic Properties of Oxovanadium (IV) Coordination Compounds with Carboxymethyl-Carrageenan and Carboxymethyl-Chitosan in Alloxan-Induced Diabetic Mice. Evid.-Based Complement. Alternat. Med. 2011, 2011, 1–7. DOI: 10.1155/2011/691067.
  • Mariappan, G.; Saha, B. P.; Datta, S.; Kumar, D.; Haldar, P. K. Design, Synthesis and Antidiabetic Evaluation of Oxazolone Derivatives. J. Chem. Sci. 2011, 123, 335–341. DOI: 10.1007/s12039-011-0079-2.
  • Shukla, S. N.; Gaur, P.; Jhariya, S.; Chaurasia, B.; Vaidya, P.; Dehariya, D.; Azam, M.; Synthesis, C. In Vitro Anti-Diabetic, Antibacterial and Anticorrosive Activity of Some Cr(III) Complexes of Schiff Bases Derived from Isoniazid. Chem. Sci. Trans. 2018, 7, 424–444. DOI: 10.7598/cst2018.1509.
  • Singh, V. Metal Complexes as Antimalarial Potential: A Review. Pharm. Innov. J. 2019, 8, 403–406.
  • Pinheiro, L. C. S.; Feitosa, L. M.; Silveira, F. F. D.; Boechat, N. Current Antimalarial Therapies and Advances in the Development of Semi-Synthetic Artemisinin Derivatives. An. Acad. Bras. Cienc. 2018, 90, 1251–1271. DOI: 10.1590/0001-3765201820170830.
  • Numan, A. T.; Atiyah, E. M.; Al-Shemary, R. K.; Abd_Ulrazzaq, S. S. Composition, Characterization and Antibacterial Activity of Mn(II), Co(II), Ni(II), Cu(II) Zn(II) and Cd(II) Mixed Ligand Complexes Schiff Base Derived from Trimethoprim with 8-Hydroxy Quinoline. J. Phys.: Conf. Ser. 2018, 1003, 012016. DOI: 10.1088/1742-6596/1003/1/012016.
  • Matangi, S.; Pragathi, J.; Bathini, U.; Gyana Kumari, C. Synthesis, Characterization and Antimicrobial Activity of Transition Metal Complexes of Schiff Base Ligand Derived from 3-Ethoxy Salicylaldehyde and 2-(2-Aminophenyl) 1-H-Benzimidazole. E-J. Chem. 2012, 9, 2516–2523. DOI: 10.1155/2012/287909.
  • Rasheed, R. T. Synthesis of New Metal Complexes Derived from 5-Nitroso-8-Hydroxy Quinoline and Salicylidene P-Imino Acetophenone with Fe (II), Co (II), Ni (II) and Cu (II) Ions. JNUS. 2012, 15, 68–73. DOI: 10.22401/JNUS.15.4.08.
  • Vinusha, H. M.; Kollur, S. P.; Revanasiddappa, H. D.; Ramu, R.; Shirahatti, P. S.; Nagendra Prasad, M. N.; Chandrashekar, S.; Begum, M. Preparation, Spectral Characterization and Biological Applications of Schiff Base Ligand and Its Transition Metal Complexes. Results Chem. 2019, 1, 100012. DOI: 10.1016/j.rechem.2019.100012.
  • Mohapatra, R. K.; Saikishore, V. P.; Azam, M.; Biswal, S. K. Synthesis and Physicochemical Studies of a Series of Mixed Ligand Transition Metal Complexes and Their Molecular Docking Investigations against Coronavirus Main Protease. Open Chem. 2020, 18, 1495–1506. DOI: 10.1515/chem-2020-0190.
  • Abou Melha, K. S.; Al-Hazmi, G. A.; Althagafi, I.; Alharbi, A.; Keshk, A. A.; Shaaban, F.; El-Metwaly, N. Spectral, Molecular Modeling, and Biological Activity Studies on New Schiff's Base of Acenaphthaquinone Transition Metal Complexes. Bioinorg. Chem. Appl. 2021, 2021, 6674394. DOI: 10.1155/2021/6674394.
  • Mahmoud, W. H.; Mohamed, G. G.; El Sayed, O. Y. Coordination Compounds of Some Transition Metal Ions with New Schiff Base Ligand Derived from Dibenzoyl Methane. Structural Characterization, Thermal Behavior, Molecular Structure, Antimicrobial, Anticancer Activity and Molecular Docking Studies. Appl. Organomet. Chem. 2017, 32, 4051. DOI: 10.1002/aoc.4051.
  • Devi, J.; Batra, N. Synthesis, Characterization and Antimicrobial Activities of Mixed Ligand Transition Metal Complexes with Isatin Monohydrazone Schiff Base Ligands and Heterocyclic Nitrogen Base. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2015, 135, 710–719. DOI: 10.1016/j.saa.2014.07.041.
  • Mumtaz, A.; Mahmud, T.; Elsegood, M. R.; Weaver, G. W. Synthesis and Characterization of New Schiff Base Transition Metal Complexes Derived from Drug Together with Biological Potential Study. J. Nucl. Med. Rad. Ther. 2016, 7, 1000310. DOI: 10.4172/2155-9619.1000310.
  • Saadeh, H. A.; Sweidan, K. A.; Mubarak, M. S. Recent Advances in the Synthesis and Biological Activity of 8-Hydroxyquinolines. Molecules. 2020, 25, 4321. DOI: 10.3390/molecules25184321.
  • Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A. R. Vogel’s Textbook of Practical Organic Chemistry, 5th ed.; Longman Group: England, 1989.
  • Devi, J.; Kumari, S.; Malhotra, R. Spectroscopic Studies, and Biological Activity of Organosilicon(iv) Complexes of Ligands Derived from 2-Aminobenzothiazole Derivatives and 2-Hydroxy-3-Methoxy BenzaldehydePhosphorus. Sulfur Silicon Relat. Elem. 2012, 187, 587–597. DOI: 10.1080/10426507.2011.634465.
  • Moonmun, D.; Majumder, R.; Lopamudra, A. Quantitative Phytochemical Estimation and Evaluation of Antioxidant and Antibacterial Activity of Methanol and Ethanol Extracts of Heliconia Rostrata. Ind. J. Pharma. Sci. 2017, 79, 79–90. DOI: 10.4172/pharmaceutical-sciences.1000204.
  • Hufford, C. D.; Funderburk, M. J.; Morgan, J. M.; Robertson, L. W. Two Antimicrobial Alkaloids from Heartwood of Liriodendron Tulipifera L. J. Pharm. Sci. 1975, 64, 789–792. DOI: 10.1002/jps.2600640512.
  • Umadevi, S.; Mohanta, G. P.; Chelladurai, V.; Manna, P. K.; Manavalan, R. Antibacterial and Antifungal Activity of Andrographis Echiodes. J. Nat. Remedies. 2003, 3, 185–188.
  • Amolegbe, S. A.; Adewuyi, S.; Akinremi, C. A.; Adediji, J. F.; Lawal, A.; Atayese, A. O.; Obaleye, J. A. Iron(III) and Copper(II) Complexes Bearing 8-Quinolinol with Amino-Acids Mixed Ligands: Synthesis, Characterization and Antibacterial Investigation. Arabian J. Chem. 2015, 8, 742–747. DOI: 10.1016/j.arabjc.2014.11.040.
  • Jaber, S.; Saleh, A. L.; Lutgen, P.; Quto, B. M.; Abu-Remeleh, Q.; Akkawi, M. Bicarbonate In-Vitro Effect on Beta-Hematin Inhibition by Artemisia Sieberi Aqueous Infusion. J. Pharma. Pharmacol. 2015, 3, 63–72. DOI: 10.17265/2328-2150/2015.02.003.
  • Bernfeld, P. Amylase Alpha and Beta. Enzymology. 1955, 1, 149–158. DOI: 10.1016/0076-6879(55)01021-5.
  • Horiuchi, N.; Nakagawa, K.; Sasaki, Y.; Minato, K.; Fujiwara, Y.; Nezu, K.; Ohe, Y.; Saijo, N. In Vitro Antitumor Activity of Mitomycin C Derivative (RM-49) and New Anticancer Antibiotics (FK973) against Lung Cancer Cell Lines Determined by Tetrazolium Dye (MTT) Assay. Cancer Chemother. Pharmacol. 1988, 22, 246–250. DOI: 10.1007/BF00273419.
  • Senthilraja, P.; Kathiresan, K. In Vitro Cytotoxicity MTT Assay in Vero, HepG2 and MCF-7 Cell Lines Study of Marine Yeast. J. Appl. Pharm. Sci. 2015, 5, 080–084. DOI: 10.7324/JAPS.2015.50313.
  • Kumar, H.; Javed, S. A.; Khan, S. A.; Mohammad, A. 1,3,4-Oxadiazole/Thiadiazole and 1,2,4-Triazole Derivatives of Biphenyl-4-Yloxy Acetic Acid: Synthesis and Preliminary Evaluation of Biological Properties. Euro. J. Med. Chem. 2008, 43, 2688–2698. DOI: 10.1016/j.ejmech.2008.01.039.
  • Duan, X. J.; Zhang, W. W.; Li, X. M.; Wang, B. G. Evaluation of Antioxidant Property of Extract and Fractions Obtained from a Red Alga, Polysiphonia Urceolata. Food Chem. 2006, 95, 37–43. DOI: 10.1016/j.foodchem.2004.12.015.
  • Podunavac-Kuzmanovic, S. O.; Markov, S. L.; Vojinovic, L. S. Physico-Chemical Characterization and Anti-Microbial Activity of Copper(II) Complexes with 2-Amino and 2-Methylbenzimidazole Derivatives. Acta Period. Technol. 2004, 35, 247–254. DOI: 10.2298/APT0435247P.
  • Etaiw, S. E. H.; Abd El-Aziz, D. M.; Abd El-Zaher, E. H.; Ali, E. A. Synthesis, Spectral, Antimicrobial and Antitumor Assessment of Schiff Base Derived from 2-Aminobenzothiazole and Its Transition Metal Complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 1331–1337. https://doi.org/10.1016/j.saa2011.04.064. DOI: 10.1016/j.saa.2011.04.064.
  • Mohan, M.; Veena, V.; Kezo, S.; Reddy, K. R. Synthesis, Characterization, Cytotoxic and Antioxidant Studies of Mixed Ligand Schiff Base Complexes Derived from P-Nitroaniline and 2, 4-Dinitroaniline. Int. J. Pharma. Sci. Res. 2019, 10, 5025–5031. DOI: 10.13040/IJPSR.0975-8232.10(11).5025-31.
  • Kerim, S.; Arzu, O.; Yasemin, U.; Mustafa, E.; Ismail, D.; Kemal, S. Spectroscopic and Theoretical Study of 1,2,4-Triazole-3-One Based Salicylaldimine Complexes and Evaluation of Superoxide-Scavenging Properties. J. Mol. Struct. 2009, 922, 1–10. DOI: 10.1016/j.molstruc.2009.02.001.
  • Alazawi, S. A. S.; Alhamadani, A. A. S. Synthesis and Characterization of Mixed Ligand Complexes of 8-Hydroxyquinoline and Schiff Base with Some Metal Ions. Um-Salama Sci. J. 2007, 4, 102–109.
  • Abbas, S. H.; Abbas, H. H.; Musa, H. K. Synthesis, Characterization, Kinetic and Thermodynamic Evaluation from TG-DTA Analysis of New Nickel(II) Mixed Ligand Complexes of Bidentate Salicylaldimine Schiff Bases and 1,10-Phenanthroline. Bulgarian Chem. Commun. 2020, 52, 68–75. DOI: 10.34049/bcc.52.1.5095.
  • Zhang, Y. H.; He, S. S.; Xie, S. Y.; Wei, P. L.; Wang, S. Z.; Liao, G. H. Two Cu(II) and Co(II) Coordination Polymers: Crystal Structures and Treatment Activity on Human Ovarian Cancer Cells. Inorg. Nano-Metal Chem. 2021, 51, 188–194. DOI: 10.1080/24701556.2020.1769669.
  • Tweedy, B. G. Plant Extracts with Metal Ions as Potential Antimicrobial Agents. Phytopathology. 1964, 55, 910–914.
  • Nagaraj, R.; Murugesan, S.; Jegathalaprathaban, R.; Jeyaraj, D. R. Biologically Active Cu(II), Co(II), Ni(II) and Zn(II) Complexes of Pyrimidine Derivative Schiff Base: DNA Binding, Antioxidant, Antibacterial and In Vitro Anticancer Studies, J. Fluoresc. 2017, 27, 1801–1814. DOI: 10.1007/s10895-017-2118-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.