204
Views
0
CrossRef citations to date
0
Altmetric
Articles

Diamond morphology CuO nanomaterial’s elastic properties, ADMET, optical, structural studies, electrical conductivity and antibacterial activities analysis

, , , &
Pages 1243-1255 | Received 21 Jun 2021, Accepted 16 Jan 2022, Published online: 02 Mar 2022

References

  • Sun, Y.; Lei, K.; Lang, M. Synthesis, Structural Characterization, Antifouling and Antibacterial Properties of Polypyridinium Salt Coated Silica Nanoparticles. J. Macromol. Sci. Part A 2021, 58, 769–777. DOI: 10.1080/10601325.2021.1936549.
  • Arslan, M.; Günay, K. Synthesis of Modified Poly(Ethylene Terephthalate) Fibers with Antibacterial Properties and Their Characterization. Int. J. Polym. Mater. Polym. Biomater. 2019, 68, 811–818. DOI: 10.1080/00914037.2018.1506987.
  • Jahan, I.; Erci, F.; Cakir-Koc, R.; Isildak, I. Microwave-Irradiated Green Synthesis of Metallic Silver and Copper Nanoparticles Using Fresh Ginger (Zingiber Officinale) Rhizome Extract and Evaluation of Their Antibacterial Potentials and Cytotoxicity. Inorg. Nanometal Chem. 2021, 51, 722–732. DOI: 10.1080/24701556.2020.1808017.
  • Azimirad, R.; Safa, S. Photocatalytic and Antifungal Activity of Flower-Like Copper Oxide Nanostructures. Synth. React. Inorg. Met. Org. Chem. 2014, 44, 798–803. DOI: 10.1080/15533174.2013.790440.
  • Su, S.; Chen, L.; Hao, L.; Chen, H.; Zhou, X.; Zhou, H. Fluorinated Sodium Carboxymethyl Cellulose Nanoparticles as Carrier for Improving Adhesion and Sustaining Release of AVM. J. Macromol. Sci. Part A 2021, 58, 219–231. DOI: 10.1080/10601325.2020.1840922.
  • Anu, N.; Thakur, K.; Kumar, K. K. Sharma, Application of Co-Doped Copper Oxide Nanoparticles against Different Multidrug Resistance Bacteria. Inorg. Nanometal Chem. 2020, 50, 933–943. DOI: 10.1080/24701556.2020.1728554.
  • El-Berry, M. F.; Sadeek, S. A.; Abdalla, A. M.; Nassar, M. Y. Facile, Controllable, Chemical Reduction Synthesis of Copper Nanostructures Utilizing Different Capping Agents. Inorg. Nanometal Chem. 2020, 2020, 1–13. DOI: 10.1080/24701556.2020.1837162.
  • Akbarzadeh. T, N.; Tahkor, A. Synthesis and Characterization of Copper Oxide Nanocrystal via Preparation of Precursor Tri-Homo-Nuclear Inorganic Complex. Inorg. Nanometal Chem. 2019, 49, 107–112. DOI: 10.1080/24701556.2019.1606826.
  • Yadav, M. K.; Pokhrel, S.; Yadav, P. N. Novel Chitosan Derivatives of 2-Imidazolecarboxaldehyde and 2-Thiophenecarboxaldehyde and Their Antibacterial Activity. J. Macromol. Sci. Part A 2020, 57, 703–710. DOI: 10.1080/10601325.2020.1763809.
  • Arun, L.; Karthikeyan, C.; Philip, D.; Dhayanithi, D.; Giridharan, N. V.; Unni, C. Influence of Transition Metal Ion Ni2+ on Optical, Electrical, Magnetic and Antibacterial Properties of Phyto-Synthesized CuO Nanostructure. Opt. Quant. Electron. 2018, 50, 414. DOI: 10.1007/s11082-018-1684-9.
  • Thanaraj, C.; Priya Dharsini, G. R.; Ananthan, N.; Velladurai, R. Facile Route for the Synthesis and Cytotoxic Effect of 2-Amino-4H-Benzo[b]Pyran Derivatives in Aqueous Media Using Copper Oxide Nanoparticles Decorated on Cellulose Nanocrystals as Heterogeneous Catalyst. Inorg. Nanometal Chem. 2019, 49, 313–321. DOI: 10.1080/24701556.2019.1661459.
  • Baylan, N.; İlalan, İ.; İnci, İ. Copper Oxide Nanoparticles as a Novel Adsorbent for Separation of Acrylic Acid from Aqueous Solution: Synthesis, Characterization, and Application. Water. Air. Soil Pollut. 2020, 231, 465. DOI: 10.1007/s11270-020-04832-3.
  • Batool, M.; Khurshid, S.; Qureshi, Z.; Hassan, A.; Ahmed Siddique, M. B.; Naveed, S.; Siddique, S. A. Study of Biogenically Fabricated Transition Metal Oxides Nanoparticles on Oral Cavity Infectious Microbial Strains. Inorg. Nanometal Chem. 2021, 51, 856–866. DOI: 10.1080/24701556.2020.1811729.
  • Amininasab, S. M.; Esmaili, S.; Shami, Z. Synthesis of Polyamides Contains Pyridine and Xanthene Pendant Group: Study of Optical, Thermal, Antibacterial Activity and Hexavalent Chromium Ion Adsorption. J. Macromol. Sci. Part A 2020, 57, 35–45. DOI: 10.1080/10601325.2019.1667734.
  • Makenali, M.; Kazeminezhad, I. Characterization of Thin Film of CuO Nanorods Grown with a Chemical Deposition Method: A Study of Significance of Deposition Time. Inorg. Nanometal Chem. 2020, 50, 764–769. DOI: 10.1080/24701556.2020.1724149.
  • Mohamed, A. A.; Abu-Elghait, M.; Ahmed, N. E.; Salem, S. S. Eco-Friendly Mycogenic Synthesis of ZnO and CuO Nanoparticles for in Vitro Antibacterial, Antibiofilm, and Antifungal Applications. Biol. Trace Elem. Res. 2021, 199, 2788–2799. DOI: 10.1007/s12011-020-02369-4.
  • Lokhande, P. E.; Chavan, U. S. Surfactant-Assisted Cabbage Rose-like CuO Deposition on Cu Foam by for Supercapacitor Applications. Inorg. Nanometal Chem. 2018, 48, 434–440. DOI: 10.1080/24701556.2019.1569685.
  • Din, M. I.; Rizwan, R.; Hussain, Z.; Khalid, R. Biogenic Synthesis of Mono Dispersed Co/CoO Nanoparticles Using Syzygium Cumini Leaves for Catalytic Application. Inorg. Nanometal Chem. 2021, 51, 773–779. DOI: 10.1080/24701556.2020.1808993.
  • Puspalatha, R.; Ashok, B.; Hariram, N.; Varada Rajulu, A. Antibacterial Polyester Fabrics with in Situ Generated Copper and Cuprous Oxide Nanoparticles by Biodirection Method. Inorg. Nanometal Chem. 2021, 51, 391–398. DOI: 10.1080/24701556.2020.1791181.
  • Mohammadzadeh Kakhki, R.; Yaghoobi Rahni, S.; Karimian, A. Removal of Methyl Orange from Aqueous Solutions by a Novel, High Efficient and Low Cost Copper-Modified Nanoalum. Inorg. Nanometal Chem. 2020, 2020, 1–6. DOI: 10.1080/24701556.2020.18359666.
  • Wang, S.; Liu, W.; Shi, H.; Zhang, F.; Liu, C.; Liang, L.; Pi, K. An Amino-Terminated Polyether-Grafted Graphene Oxide for Mechanical and Thermal Properties Reinforcement of Waterborne Epoxy Composites. J. Macromol. Sci. Part A 2021, 58, 448–460. DOI: 10.1080/10601325.2021.18864.
  • Braidi, N.; Buffagni, M.; Ghelfi, F.; Parenti, F.; Gennaro, A.; Isse, A. A.; Bedogni, E.; Bonifaci, L.; Cavalca, G.; Ferrando, A.; et al. ARGET ATRP of Styrene in EtOAc/EtOH Using Only Na2CO3 to Promote the Copper Catalyst Regeneration. J. Macromol. Sci. Part A 2021, 58, 376–386. DOI: 10.1080/10601325.2020.1866434.
  • Čech Barabaszová, K.; Holešová, S.; Bílý, M.; Hundáková, M. CuO and CuO/Vermiculite Based Nanoparticles in Antibacterial PVAc Nanocomposites. J. Inorg. Organomet. Polym. 2020, 30, 4218–4227. DOI: 10.1007/s10904-020-01573-y.
  • Mary, A. P. A.; Ansari, A. T.; Subramanian, R. Caffeine-Mediated Synthesis of CuO Nanoparticles: Characterization, Morphology Changes, and Bactericidal Activity. Inorganic and Nano-Metal Chemistry 2021, 51, 174–181. DOI: 10.1080/24701556.2020.1769667.
  • Gopi, S.; Amalraj, A.; Jude, S.; Benson, K. T.; Balakrishnan, P.; Haponiuk, J. T.; Thomas, S. Isolation and Characterization of Stable Nanofiber from Turmeric Spent Using Chemical Treatment by Acid Hydrolysis and Its Potential as Antimicrobial and Antioxidant Activities. J. Macromol. Sci. Part A 2019, 56, 327–340. DOI: 10.1080/10601325.2019.1578613.
  • Nair, S.; Sasidharan, A.; Divya Rani, V. V.; Menon, D.; Nair, S.; Manzoor, K.; Raina, S. Role of Size Scale of ZnO Nanoparticles and Microparticles on Toxicity toward Bacteria and Osteoblast Cancer Cells. J. Mater. Sci.: Mater. Med. 2009, 20, 235–S241. DOI: 10.1007/s10856-008-3548-5.
  • Salem, S. S.; Fouda, A. A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: An Overview. Biol. Trace. Elem. Res. 2021, 199, 344–370. DOI: 10.1007/s12011-020-02138-3.
  • Shaheen, T. I.; Fouda, A.; Salem, S. S. Integration of Cotton Fabrics with Biosynthesized CuO Nanoparticles for Bactericidal Activity in the Terms of Their Cytotoxicity Assessment. Ind. Eng. Chem. Res. 2021, 60, 1553–1563. DOI: 10.1021/acs.iecr.0c04880.
  • Badawy, A. A.; Abdelfattah, N. A. H.; Salem, S. S.; Awad, M. F.; Fouda, A. Efficacy Assessment of Biosynthesized Copper Oxide Nanoparticles (CuO-NPs) on Stored Grain Insects and Their Impacts on Morphological and Physiological Traits of Wheat (Triticum aestivum L.) Plant. Biology 2021, 10, 233. DOI: 10.3390/biology10030233.
  • Amiri, M.; Etemadifar, Z.; Daneshkazemi, A.; Nateghi, M. Antimicrobial Effect of Copper Oxide Nanoparticles on Some Oral Bacteria and Candida Species. J. Dent. Biomater. 2017, 4, 347–352.
  • Pang, H.; Gao, F.; Lu, Q. Morphology Effect on Antibacterial Activity of Cuprous Oxide. Chem. Commun. 2009, 1076–1078. DOI: 10.1039/b816670f.
  • Kasi, G.; Viswanathan, K.; Seo, J. Effect of Annealing Temperature on the Morphology and Antibacterial Activity of Mg-Doped Zinc Oxide Nanorods. Ceram. Int. 2019, 45, 3230–3238. DOI: 10.1016/j.ceramint.2018.10.226.
  • Stanic, V.; Tanaskovic, S. B. Antibacterial Activity of Metal Oxide Nanoparticles. In Nanotoxicity: Prevention and Antibacterial Applications of Nanomaterials (Micro and Nano Technologies), 1st ed.; Elsevier: New York, NY, 2020.
  • Vincent, M.; Hartemann, P.; Engels-Deutsch, M. Antimicrobial Applications of Copper. Int. J. Hyg. Environ. Health. 2016, 219, 585–591. DOI: 10.1016/j.ijheh.2016.06.003.
  • Bockris, J. O.; Reddy, A. K. N.; Gamboa, A. Modern Electrochemistry, 2nd ed.; Springer: Berlin, Heidelberg, 2009.
  • Marija, B. R.; Dusan, H. Modern Advances in Electrical Conductivity Measurements of Solutions. Acta. Chim. Slov. 2006, 53, 391–395.
  • Kaur, N.; Verma, Y.; Ahlawat, N.; Grewal, P.; Bhardwaj, P.; Jangid, N. K. Copper-Assisted Synthesis of Five-Membered O-Heterocycles. Inorganic and Nano-Metal Chemistry 2020, 50, 705–740. DOI: 10.1080/24701556.2020.1724144.
  • Penava, Z.; ŠimićPenava, D.; Knezić, Z. Influence Kinds of Materials on the Poisson’s Ratio of Woven Fabrics. Tehničkiglasnik 2017, 11, 101.
  • Agbaoye, R.; Adebambo, P.; Akinlami, J.; Afolabi, T.; Karazhanov, S. Z.; Ceresoli, D.; Adebayo, G. Elastic Constants and Mechanical Properties of PEDOT from First Principles Calculations. Comput. Mater. Sci. 2017, 139, 234–242. DOI: 10.1016/j.commatsci.2017.07.042.
  • Man, C. S.; Huang, M. A Simple Explicit Formula for the Voigt-Reuss-Hill Average of Elastic Polycrystals with Arbitrary Crystal and Texture Symmetries. J. Elast. 2011, 105, 29–48. DOI: 10.1007/s10659-011-9312-y.
  • Ryder, M. R.; Tan, J.-C. Explaining the Mechanical Mechanisms of Zeolitic Metal-Organic Frameworks: Revealing Auxeticity and Anomalous Elasticity. Dalton Trans. 2016, 45, 4154–4161. DOI: 10.1039/c5dt03514g.
  • Gaillac, R.; Pullumbi, P.; Coudert, F. X. J. ELATE: An Open-Source Online Application for Analysis and Visualization of Elastic Tensors. J. Phys. Condens. Matter. 2016, 28, 275201. DOI: 10.1088/0953-8984/28/27/275201.
  • By-Products of Palm Trees and Their Applications; Materials Research Forum LLC: Millersville, PA, 2019.
  • Yu, H.; Adedoyin, A. ADME-Tox in Drug Discovery: Integration of Experimental and Computational Technologies. Drug Discov. Today 2003, 8, 852–861. DOI: 10.1016/S1359-6446(03)02828-9.
  • Cheng, F.; Li, W.; Liu, G.; Tang, Y. In Silico ADMET Prediction: Recent Advances, Current Challenges and Future Trends. Curr. Top. Med. Chem. 2013, 13, 1273–1289. DOI: 10.2174/15680266113139990033.
  • Patel, C. N.; Kumar, S. P.; Rawal, R. M.; Patel, D. P.; Gonzalez, F. J.; Pandya, H. A. A Multiparametric Organ Toxicity Predictor for Drug Discovery. Toxicol. Mech. Methods 2020, 30, 159–166. DOI: 10.1080/15376516.2019.1681044.
  • Swiss ADME: A Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717.
  • Pires, D. E. V.; Blundell, T. L.; Ascher, D. B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. DOI: 10.1021/acs.jmedchem.5b00104.
  • Du, Q.; Mezey, P. G.; Chou, K. C. Heuristic Molecular Lipophilicity Potential (HMLP): A 2D-QSAR Study to LADH of Molecular Family Pyrazole and Derivatives. J. Comput. Chem. 2005, 26, 461–470. DOI: 10.1002/jcc.20174.
  • Kanwal, A.; Sajjad, S.; Leghari, S. A. K.; Yousaf, Z. Cascade Electron Transfer in Ternary CuO/α-Fe2O3/γ-Al2O3 Nanocomposite as an Effective Visible Photocatalyst. J. Phys. Chem. Solids 2021, 151, 109899. DOI: 10.1016/j.jpcs.2020.109899.
  • Ali, J. S.; Mannan, A.; Nasrullah, M.; Ishtiaq, H.; Naz, S.; Zia, M. Antimicrobial, Antioxidative, and Cytotoxic Properties of Monotheca Buxifolia Assisted Synthesized Metal and Metal Oxide Nanoparticles. Inorg. Nanometal Chem. 2020, 50, 770–782. DOI: 10.1080/24701556.2020.1724150.
  • Panthawan, A.; Sanmuangmoon, P.; Jumrus, N.; Thongpan, W.; Pooseekheaw, P.; Kumpika, T.; Sroila, W.; Kantarak, E.; Tuantranont, A.; Singjai, P.; Thongsuwan, W. Photocatalytic Enhancement of a Novel Composite CuAl2O4/TiO2/CuO Films Prepared by Sparking Process. Optik 2020, 224, 165502. DOI: 10.1016/j.ijleo.2020.165502.
  • Venugopal, N.; Krishnamurthy, G.; Bhojyanaik, H. S.; Madhukar Naik, M.; Sunilkumar, N. Synthesis, Characterization, and Biological Activity of Cu(II) and Co(II) Complexes of Novel N1,N2-Bis(4-Methyl Quinolin-2-yl)Benzene-1,2-Diamine: CuO and CoO Nanoparticles Derived from Their Metal Complexes for Photocatalytic Activity. Inorg. Nanometal Chem. 2021, 51, 1117–1126. DOI: 10.1080/24701556.2020.1814337.
  • Anitha, S.; Brabu, B.; Thiruvadigal, D. J.; Gopalakrishnan, C.; Natarajan, T. S. Optical, Bactericidal and Water Repellent Properties of Electrospun Nano-Composite Membranes of Cellulose Acetate and ZnO. Carbohydr. Polym. 2012, 87, 1065–1072. DOI: 10.1016/j.carbpol.2011.08.030.
  • Pal, S.; Tak, Y. K.; Song, J. M. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. DOI: 10.1128/AEM.02218-06.
  • Sui, Z. M.; Chen, X.; Wang, L. Y.; Xu, L. M.; Zhuang, W. C.; Chai, Y. C.; Yang, C. J. Capping Effect of CTAB on Positively Charged Ag Nanoparticles. Physica E. 2006, 33, 308–314. DOI: 10.1016/j.physe.2006.03.151.
  • Chatterjee, A. K.; Chakraborty, R.; Basu, T. Mechanism of Antibacterial Activity of Copper Nanoparticles. Nanotechnology 2014, 25, 135101. DOI: 10.1088/0957-4484/25/13/135101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.