107
Views
0
CrossRef citations to date
0
Altmetric
Articles

Eco-friendly synthesis of nano-sized cobalt ferrites and influence of pH variation on structural properties

, &
Pages 1256-1264 | Received 31 Jul 2021, Accepted 16 Jan 2022, Published online: 06 Mar 2022

References

  • Wang, L.; Wen, B.; Bai, X.; Liu, C.; Yang, H. Facile and Green Approach to the Synthesis of Zeolitic Imidazolate Framework Nanosheet-Derived 2D Co/C Composites for a Lightweight and Highly Efficient Microwave Absorber. J. Colloid Interface Sci. 2019, 540, 30–38. DOI: 10.1016/j.jcis.2018.12.111.
  • Dong, J.; Lin, Y.; Zong, H.; Yang, H.; Wang, L.; Dai, Z. Three-Dimensional Architecture Reduced Graphene Oxide-LiFePO4 Composite: Preparation and Excellent Microwave Absorption Performance. Inorg. Chem. 2019, 58, 2031–2041. DOI: 10.1021/acs.inorgchem.8b03043.
  • Dai, J.; Yang, H.; Wen, B.; Zhou, H.; Wang, L.; Lin, Y. Flower-like MoS2@Bi2Fe4O9 Microspheres with Hierarchical Structure as Electromagnetic Wave Absorber. Appl. Surf. Sci. 2019, 479, 1226–1235. DOI: 10.1016/j.apsusc.2019.02.049.
  • Tatarchuk, T.; Myslin, M.; Mironyuk, I.; Bououdina, M.; Pędziwiatr, A. T.; Gargula, R.; Bogacz, B. F.; Kurzydło, P. Synthesis, Morphology, Crystallite Size and Adsorption Properties of Nanostructured Mg–Zn Ferrites with Enhanced Porous Structure. J. Alloys Compd. 2020, 819, 152945. DOI: 10.1016/j.jallcom.2019.152945.
  • Tatarchuk, T.; Mironyuk, I.; Kotsyubynsky, V.; Shyichuk, A.; Myslin.; Boychuk, M. V. Structure, Morphology and Adsorption Properties of Titania Shell Immobilized onto Cobalt Ferrite Nanoparticle Core. J. Mol. Liq. 2020, 297, 111757. DOI: 10.1016/j.molliq.2019.111757.
  • Danyliuk, N.; Tomaszewska, J.; Tatarchuk, T. Halloysite Nanotubes and Halloysite-Based Composites for Environmental and Biomedical Applications. J. Mol. Liq. 2020, 309, 113077. DOI: 10.1016/j.molliq.2020.113077.
  • Pubby, K.; Meena, S. S.; Yusuf, S. M.; Bindra Narang, S. Cobalt Substituted Nickel Ferrites via Pechini’s Sol–Gel Citrate Route: X-Band Electromagnetic Characterization. J. Magn. Magn. Mater. 2018, 466, 430–445. DOI: 10.1016/j.jmmm.2018.07.038.
  • Ghodake, J. S.; Kambale, R. C.; Shinde, T. J.; Maskar, P. K.; Suryavanshi, S. S. Magnetic and Microwave Absorbing Properties of Co2+ Substituted Nickel–Zinc Ferrites with the Emphasis on Initial Permeability Studies. J. Magn. Magn. Mater. 2016, 401, 938–942. DOI: 10.1016/j.jmmm.2015.11.009.
  • Chavan, P.; Naik, L. R.; Belavi, P. B.; Chavan, G.; Ramesha, C. K.; Kotnala, R. K. Studies on Electrical and Magnetic Properties of Mg-Substituted Nickel Ferrites. J. Electron. Mater. 2017, 46, 188–198. DOI: 10.1007/s11664-016-4886-6.
  • Atiq, S.; Majeed, M.; Ahmad, A.; Abbas, S. K.; Saleem, M.; Riaz, S.; Naseem, S. Synthesis and Investigation of Structural, Morphological, Magnetic, Dielectric and Impedance Spectroscopic Characteristics of Ni-Zn Ferrite Nanoparticles. Ceram. Int. 2017, 43, 2486–2494. DOI: 10.1016/j.ceramint.2016.11.046.
  • Olusegun, S. J.; Freitas, E. T. F.; Lara, L. R. S.; Stump, H. O.; Mohallem, N. D. S. Effect of Drying Process and Calcination on the Structural and Magnetic Properties of Cobalt Ferrite. Ceram. Int. 2019, 45, 8734–8743. DOI: 10.1016/j.ceramint.2019.01.197.
  • Ding, Z.; Wang, W.; Zhang, Y.; Li, F.; Liu, J. P. Synthesis, Characterization and Adsorption Capability for Congo Red of CoFe2O4 Ferrite Nanoparticles. J. Alloy. Comp. 2015, 640, 362–370. DOI: 10.1016/j.jallcom.2015.04.020.
  • Kulkarni, A. B.; Mathad, S. N. Variation in Structural and Mechanical Properties of Cd-Doped Co-Zn Ferrites. Mater. Sci. Energy Technol. 2019, 2, 455–462. DOI: 10.1016/j.mset.2019.03.003.
  • Yattinahalli, S. S.; Kapatkar, S. B.; Mathad, S. N. Structural Studies of Zinc Ferrite Synthesized at Low Temperature. Int. Rev. 2014, 1, 5–8.
  • Kooti, M.; Afshari, M. Magnetic Cobalt Ferrite Nanoparticles as an Efficient Catalyst for Oxidation of Alkenes. Sci. Iran 2012, 19, 1991–1995. DOI: 10.1016/j.scient.2012.05.005.
  • Amiri, M.; Akbari, A.; Ahmadi, M.; Pardakhti, A.; Niasari, M. S. Synthesis and in Vitro Evaluation of a Novel Magnetic Drug Delivery System; Proecological Method for the Preparation of CoFe2O4 Nanostructures. J. Mol. Liq. 2018, 249, 1151–1160. DOI: 10.1016/j.molliq.2017.11.133.
  • Dey, C.; Baishya, K.; Ghosh, A.; Goswami, M. M.; Ghosh, A.; Mandal, K. Improvement of Drug Delivery by Hyperthermia Treatment Using Magnetic Cubic Cobalt Ferrite Nanoparticles. J. Magn. Magn. Mater. 2017, 427, 168–174. DOI: 10.1016/j.jmmm.2016.11.024.
  • Almessiere, M. A.; Slimani, Y.; Guner, S.; Nawaz, M.; Baykal, A.; Aldakheel, F.; Akhtar, S.; Ercan, I.; Belenli, İ.; Ozçelik, B. Magnetic and Structural Characterization of Nb3+-Substituted CoFe2O4 Nanoparticles. Ceram. Int. 2019, 45, 8222–8232. DOI: 10.1016/j.ceramint.2019.01.125.
  • Lakic, M.; Andjelkovic, L.; Suljagic, M.; Vulic, P.; Peric, M.; Iskrenovic, P.; Krstic, I.; Kuraica, M. M.; Nikolic, A. S. Optical Evidence of Magnetic Field-Induced Ferrofluid Aggregation: Comparison of Cobalt Ferrite, Magnetite, and Magnesium Ferrite. Opt. Mater. 2019, 91, 279–285. DOI: 10.1016/j.optmat.2019.03.031.
  • Jadoun, P.; Sharma, J.; Kumar, S.; Dolia, S. N.; Bhatnagar, D.; Saxena, V. K. Structural and Magnetic Behavior of Nanocrystalline Cr Doped Co-Mg Ferrite. Ceram. Int. 2018, 44, 6747–6753. DOI: 10.1016/j.ceramint.2018.01.091.
  • Yattinahalli, S. S.; Kapatkar, S. B.; Mathad, S. N. Synthesis and Structural Characterization of Nanomanganese Ferrites. J. Nano- Electron. Phys. 2015, 7, 04096–04099.
  • Rohollah Safi, Ali Ghasemi, Reza Shoja-Razavi, Majid Tavous. The Role of pH on the Particle Size and Magnetic Consequence of Cobalt Ferrite. J. Magn. Magn. Mater. 2015, 396, 288–294.
  • Annie Vinosha Jerome Das, P. S. Investigation on the Role of pH for the Structural, Optical and Magnetic Properties of Cobalt Ferrite Nanoparticles and Its Effect on the Photo-Fenton Activity. Mater. Today: Proc. 2018, 5, 8662–8671. DOI: 10.1016/j.matpr.2017.12.291.
  • Yattinahalli, S. S.; Kapatkar, S. B.; Ayachit, N. H.; Mathad, S. N. Synthesis and Structural Characterization of Nanosized Nickel Ferrite. Int. J. Self-Propag. High-Temp. Synth. 2013, 22, 147–150. DOI: 10.3103/S1061386213030114.
  • Pathan, A. T.; Mathad, S. N.; Shaikh, A. M. Infrared Spectral Studies of Co2+ Substituted LiNi–Zn Nano-Structured Ferrites. Int. J. Self-Propag. High-Temp. Synth. 2014, 23, 112–117. DOI: 10.3103/S1061386214020083.
  • Mathad, S. N.; Jadhav, R. N.; Patil, N. D.; Puri, V. Structural and Mechanical Properties of Sr+2-Doped Bismuth Manganite Thick Films. Int. J. Self-Propag. High-Temp. Synth. 2013, 22, 180–184. DOI: 10.3103/S1061386213040018.
  • Zak, K.; Abrishami, M. E.; Majid, W. H. A.; Yousefi, R.; Hosseini, S. M. Effects of Annealing Temperature on Some Structural and Optical Properties of ZnO Nanoparticles Prepared by a Modified Sol–Gel Combustion Method. Ceram. Inter. 2011, 37, 393–398. DOI: 10.1016/j.ceramint.2010.08.017.
  • Tagliente, M. A.; Massaro, M. Strain-Driven (0 0 2) Preferred Orientation of ZnO Nanoparticles in Ion-Implanted Silica. Phys. Res. B 2008, 266, 1055. DOI: 10.1016/j.nimb.2008.02.036.
  • Prabhu, Y. T.; Rao, K. V.; Kumar, V. S. S.; Kumari, B. S. X-Ray Analysis by Williamson-Hall and Size-Strain Plot Methods of ZnO Nanoparticles with Fuel Variation. WJNSE. 2014, 04, 21–28. DOI: 10.4236/wjnse.2014.41004.
  • Rendale, M. K.; Mathad, S. N.; Puri, V. Structural, Mechanical and Elastic Properties of Ni0.7−xCoxZn0.3Fe2O4 Nano-Ferrite Thick Films. Microelectron. Int. 2017, 34, 57–63. DOI: 10.1108/MI-02-2016-0009.
  • Patil, M. R.; Rendale, M. K.; Mathad, S. N.; Pujar, R. B. FTIR Spectra and Elastic Properties of Cd-Substituted Ni–Zn Ferrites. Int. J. Self-Propag. High-Temp. Synth. 2017, 26, 33–39. DOI: 10.3103/S1061386217010083.
  • Waldron, R. D. Infrared Spectra of Ferrites. Phys. Rev. 1955, 99, 1727–1735. DOI: 10.1103/PhysRev.99.1727.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.