93
Views
1
CrossRef citations to date
0
Altmetric
Articles

A comprehensive study on the photocatalytic activity of CuO-doped ZrO2–ZnO nanocomposites under visible light

, &
Pages 1383-1395 | Received 21 Oct 2020, Accepted 25 Nov 2021, Published online: 23 Apr 2022

References

  • Aghabeygi, S.; Khademi-Shamami, M. ZnO/ZrO2 Nanocomposite: Sonosynthesis, Characterization and Its Application for Wastewater Treatment. Ultrason. Sonochem. 2018, 41, 458–465. DOI: 10.1016/j.ultsonch.2017.09.020.
  • Naz, F.; Saeed, K. Investigation of Photocatalytic Behavior of Undoped ZnO and Cr-Doped ZnO Nanoparticles for the Degradation of Dye. Inorg. Nano-Met. Chem. 2021, 51, 1–11. DOI: 10.1080/24701556.2020.1749657.
  • Salvi, S.; Lokhande, P. B.; Mujawar, H. A. Degradation of Recalcitrant Phenol Pollutant and Antibacterial Study by Ni. Sr doped ZnO. Inorg. Nano-Met. Chem 2020, 50, 114–123. DOI: 10.1080/24701556.2019.1662806.
  • Mushtaq, K.; Saeed, M.; Gul, W.; Munir, M.; Firdous, A.; Yousaf, T.; Khan, K.; Sarwar, H. M. R.; Riaz, M. A.; Zahid, S. Synthesis and Characterization of TiO2 via Sol-Gel Method for Efficient Photocatalytic Degradation of Antibiotic Ofloxacin. Inorg. Nano-Met. Chem 2020, 50, 580–586. DOI: 10.1080/24701556.2020.1722695.
  • Soltani, R. D. C.; Rezaee, A.; Khataee, A. R.; Safari, M. Photocatalytic Process by Immobilized Carbon Black/ZnO Nanocomposite for Dye Removal from Aqueous Medium: Optimization by Response Surface Methodology. J. Ind. Eng. Chem 2014, 20, 1861–1868. DOI: 10.1016/j.jiec.2013.09.003.
  • Mansouri, M.; Hosseinvand, A.; Kikhavani, T.; Setareshenas, N. Synthesis and Characterization of N-Doped ZnO-γAl2O3 Nanoparticles for Photo-Catalytic Application. Int. J. Chem. React. Eng. 2020, 18, 20190116. DOI: 10.1515/ijcre-2019-0116.
  • Nodehi, A.; Atashi, H.; Mansouri, M. Improved Photocatalytic Degradation of Reactive Blue 81 Using NiO-Doped ZnO–ZrO2 Nanoparticles. J. Disper. Sci. Technol 2019, 40, 766–776. DOI: 10.1080/01932691.2018.1499522.
  • Mansouri, M.; Mozafari, N.; Bayati, B.; Setareshenas, N. Photo-Catalytic Dye Degradation of Methyl Orange Using Zirconia-Zeolite Nanoparticles. Bulletin Mater. Sci. 2019, 42, 230. DOI: 10.1007/s12034-019-1933-y
  • Emeline, A.; Kataeva, G. V.; Litke, A. S.; Rudakova, A. V.; Ryabchuk, V. K.; Serpone, N. Spectroscopic and Photoluminescence Studies of Wide Band Gap Insulating Material: Powdered and Colloidal ZrO2 Sols. Langmuir 1998, 14, 5011–5022. DOI: 10.1021/la980083l.
  • Mansouri, M.; Nademi, M.; Olya, M. E.; Lotfi, H. Study of Methyl Tert-Butyl Ether (MTBE) Photocatalytic Degradation with UV/TiO2-ZnO-CuO Nanoparticles. J. Chem. Health Risks 2017, 7, 19–32. DOI: 10.22034/jchr.2017.544161.
  • Kumar, S.; Maivizhikannan, V.; Drews, J.; Krishnan, V. Fabrication of Nanoheterostructures of Boron Doped ZnO-MoS2 with Enhanced Photostability and Photocatalytic Activity for Environmental Remediation Applications. Vacuum 2019, 163, 88–98. DOI: 10.1016/j.vacuum.2019.02.001.
  • Kumar, P.; Kumar, A.; Rizvi, M. A.; Moosvi, S. K.; Krishnan, V.; Duvenhage, M. M.; Roos, W. D.; Swart, H. C. Surface, Optical and Photocatalytic Properties of Rb Doped ZnO Nanoparticles. Appl. Surf. Sci. 2020, 514, 145930. DOI: 10.1016/j.apsusc.2020.145930.
  • Vignesh, K.; Rajarajan, M.; Suganthi, A. Visible Light Assisted Photocatalytic Performance of Ni and Th co-Doped ZnO Nanoparticles for the Degradation of Methylene Blue Dye. J. Ind. Eng. Chem. 2014, 20, 3826–3833. DOI: 10.1016/j.jiec.2013.12.086.
  • Ullah, H.; Mushtaq, L.; Ullah, Z.; Fazal, A.; Khan, A. M. Effect of Vegetable Waste Extract on Microstructure, Morphology, and Photocatalytic Efficiency of ZnO–CuO Nanocomposites. Inorg. Nano-Met. Chem 2020, 51, 1–13. DOI: 10.1080/24701556.2020.1813766.
  • Buvaneswari, K.; Karthiga, R.; Kavitha, B.; Rajarajan, M.; Suganthi, A. Effect of FeWO4 Doping on the Photocatalytic Activity of ZnO under Visible Light Irradiation. Appl. Surf. Sci. 2015, 356, 333–340. DOI: 10.1016/j.apsusc.2015.08.060.
  • Maleki, A.; Safari, M.; Shahmoradi, B.; Zandsalimi, Y.; Daraei, H.; Gharibi, F. Photocatalytic Degradation of Humic Substances in Aqueous Solution Using Cu-Doped ZnO Nanoparticles under Natural Sunlight Irradiation. Environ. Sci. Pollut. Res. Int. 2015, 22, 16875–16880. DOI: 10.1007/s11356-015-4915-7.
  • Senobari, S.; Nezamzadeh-Ejhieh, A. A Comprehensive Study on the Enhanced Photocatalytic Activity of CuO-NiO Nanoparticles: Designing the Experiments. J. Mol. Liq 2018, 261, 208–217. DOI: 10.1016/j.molliq.2018.04.028.
  • Karthiga, R.; Rajarajan, M.; Suganthi, A. Green Synthesis of Ag-Mo/CuO Nanoparticles Using Azadirachta Indica Leaf Extracts to Study Its Solar Photocatalytic and Antimicrobial Activities. Mater. Sci. Semicond. Process 2019, 91, 230–238. DOI: 10.1016/j.mssp.2018.11.021.
  • Fu, M.; Li, Y.; Wu, S.; Lu, P.; Liu, J.; Dong, F. Sol-Gel Preparation and Enhanced Photocatalytic Performance of Cu-Doped ZnO Nanoparticles. Appl. Surf. Sci. 2011, 258, 1587–1591. DOI: 10.1016/j.apsusc.2011.10.003.
  • Mohan, R.; Krishnamoorthy, K.; Kim, S. J. Enhanced Photocatalytic Activity of Cu-Doped ZnO Nanorods. Solid State Commun 2012, 152, 375–380. DOI: 10.1016/j.ssc.2011.12.008.
  • Rengaraj, S.; Li, X. Z. Enhanced Photocatalytic Activity of TiO2 by Doping with Ag for Degradation of 2,4,6-Trichlorophenol in Aqueous Suspension. J. Mol. Catal. A: Chem. 2006, 243, 60–67. DOI: 10.1016/j.molcata.2005.08.010.
  • Kumar, S.; Sharma, V.; Bhattacharyya, K.; Krishnan, V. Synergetic Effect of MoS2-RGO Doping to Enhance the Photocatalytic Performance of ZnO Nanoparticles. New J. Chem 2016, 40, 5185–5197. DOI: 10.1039/C5NJ03595C.
  • Kumar, S.; Pandit, V.; Bhattacharyya, K.; Krishnan, V. Sunlight Driven Photocatalytic Reduction of 4-Nitrophenol on Pt Decorated ZnO-RGO Nanoheterostructures. Mater. Chem. Phys 2018, 214, 364–376. DOI: 10.1016/j.matchemphys.2018.04.113.
  • Renuka, L.; Anantharaju, K. S.; Sharma, S. C.; Nagabhushana, H.; Vidya, Y. S.; Nagaswarupa, H. P.; Prashantha, S. C. A Comparative Study on the Structural, Optical, Electrochemical and Photocatalytic Properties of ZrO2 Nanooxide Synthesized by Different Routes. J. Alloys Compd 2017, 695, 382–395. DOI: 10.1016/j.jallcom.2016.10.126.
  • Arote, S. A.; Pathan, A. S.; Hase, Y. V.; Bardapurkar, P. P.; Gapale, D. L.; Palve, B. M. Investigations on Synthesis, Characterization and Humidity Sensing Properties of ZnO and ZnO-ZrO2 Composite Nanoparticles Prepared by Ultrasonic Assisted Wet Chemical Method. Ultrason. Sonochem. 2019, 55, 313–321. DOI: 10.1016/j.ultsonch.2019.01.012.
  • Elhadj, M.; Samira, A.; Mohamed, T.; Djawad, F.; Asma, A.; Djamel, N. Removal of Basic Red 46 Dye from Aqueous Solution by Adsorption and Photocatalysis: equilibrium, Isotherms, Kinetics, and Thermodynamic Studies. Separ. Sci. Tech. 2019, 55, 1–19. DOI: 10.1080/01496395.2019.1577896.
  • Ibrahim, M. M. Photocatalytic Activity of Nanostructured ZnO–ZrO2 Binary Oxide Using Fluorometric Method. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc 2015, 145, 487–492. DOI: 0.1016/j.saa.2015.02.057 DOI: 10.1016/j.saa.2015.02.057.
  • Rahimpour, F.; Hatti-Kaul, R.; Mamo, G. Response Surface Methodology and Artificial Neural Network Modelling of an Aqueous Two-Phase System for Purification of a Recombinant Alkaline Active Xylanase. Process Biochem 2016, 51, 452–462. DOI: 10.1016/j.procbio.2015.12.018.
  • Desai, K. M.; Survase, S. A.; Saudagar, P. S.; Lele, S. S.; Singhal, R. S. Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) in Fermentation Media Optimization: Case Study of Fermentative Production of Scleroglucan. Biochem. Eng. J 2008, 41, 266–273. DOI: 10.1016/j.bej.2008.05.009.
  • Zafar, M. N.; Dar, Q.; Nawaz, F.; Zafar, M. N.; Iqbal, M.; Nazar, M. F. Effective Adsorptive Removal of Azo Dyes over Spherical ZnO Nanoparticles. J. Mater. Res. Technol 2019, 8, 713–725. DOI: 10.1016/j.jmrt.2018.06.002.
  • Hwang, K.-S.; Jeon, Y.-S.; Kim, S.-B.; Kim, C.-K.; Oh, J.-S.; An, J.-H.; Kim, B.-H. Ca-Doped ZrO2 Thin Films Deposited by Using the Spin-Coating Pyrolysis Process with a Metal Naphthenate Precursor. J. Korean Phy. Soc. 2003, 43, 754–757. DOI: 10.3938/jkps.43.754.
  • Peng, C.; Shen, C.; Zheng, S.; Yang, W.; Hu, H.; Liu, J.; Shi, J. Transformation of CuO Nanoparticles in the Aquatic Environment: Influence of pH, Electrolytes and Natural Organic Matter. Nanomaterials (Basel) 2017, 7, 326. DOI: 10.3390/nano7100326.
  • Ghule, L. A.; Patil, A. A.; Sapnar, K. B.; Dhole, S. D.; Garadkar, K. M. Photocatalytic Degradation of Methyl Orange Using ZnO Nanorods. Toxicol. Environ. Chem. 2011, 93, 623–634. DOI: 10.1080/02772248.2011.560852.
  • Setarehshenas, N.; Hosseini, S. H.; Ahmadi, G. Optimization and Kinetic Model Development for Photocatalytic Dye Degradation. Arab. J. Sci. Eng. 2018, 43, 5785–5797. DOI: 10.1007/s13369-017-3010-4.
  • Nenavathu, B. P.; Krishna Rao, A. V. R.; Goyal, A.; Kapoor, A.; Dutta, R. K. Synthesis, Characterization and Enhanced Photocatalytic Degradation Efficiency of Se Doped ZnO Nanoparticles Using Trypan Blue as a Model Dye. Appl. Catal. A: Gen. 2013, 459, 106–113. DOI: 10.1016/j.apcata.2013.04.001.
  • Mansouri, M.; Sadeghian, S.; Mansouri, G.; Setarshenas, N. Enhanced Photocatalytic Performance of UiO-66-NH2/TiO2 Composite for Dye Degradation. Environ. Sci. Pollut. Res. 2021, 28, 25552–25565. DOI: 10.1007/s11356-020-12098-9.
  • Gadekar, M. R.; Ahammed, M. M. Modelling Dye Removal by Adsorption onto Water Treatment Residuals Using Combined Response Surface Methodology-Artificial Neural Network Approach. J. Environ. Manage 2019, 231, 241–248. DOI: 10.1016/j.jenvman.2018.10.017.
  • Karri, R. R.; Sahu, J. N. Modeling and Optimization by Particle Swarm Embedded Neural Network for Adsorption of Zinc (II) by Palm Kernel Shell Based Activated Carbon from Aqueous Environment. J. Environ. Manage 2018, 206, 178–191. DOI: 10.1016/j.jenvman.2017.10.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.