212
Views
3
CrossRef citations to date
0
Altmetric
Articles

Visible light driven robust photocatalytic activity in vanadium-doped ZnO/SnS core-shell nanocomposites for decolorization of MB dye towards wastewater treatment

, &
Pages 1059-1076 | Received 05 Aug 2021, Accepted 29 Mar 2022, Published online: 18 May 2022

References

  • Zhou, J.; Zhang, Z.; Kong, X.; He, F.; Zhao, R.; Wu, R.; Wei, T.; Wang, L.; Feng, J. A Novel P-N Heterojunction with Staggered Energy Level Based on ZnFe2O4 Decorating SnS2 Nanosheet for Efficient Photocatalytic Degradation. J. Appl. Surf. Sci. 2020, 510, 145442. DOI: 10.1016/j.apsusc.2020.145442.
  • Sharma, S.; Dutta, V.; Singh, P.; Raizada, P.; Sani, A. R.; Bandegharaei, A. H.; Thakur, V. K. Carbon Quantum Dot Supported Semiconductor Photocatalysts for Efficient Degradation of Organic Pollutants in Water: A Review. J. Clean. Prod. 2019, 228, 755–769. DOI: 10.1016/j.jclepro.2019.04.292.
  • Hasija, V.; Raizada, P.; Sudhaik, A.; Sharma, K.; Kumar, A.; Singh, P.; Jonnalagadda, S. B.; Thakur, V. K. Recent Advances in Noble Metal Free Doped Graphitic Carbon Nitride Based Nanohybrids for Photocatalysis of Organic Contaminants in Water: A Review. Appl. Mater. Today 2019, 15, 494–524. DOI: 10.1016/j.apmt.2019.04.003.
  • Hussain, W.; Badshah, A.; Hussain, R. A.; Din, I. U.; Aleem, M. A.; Bahadur, A.; Iqbal, S.; Farooq, M. U.; Ali, H. Photocatalytic Applications of Cr2S3 Synthesized from Single and Multi-Source Precursors. Mater. Chem. Phys. 2017, 194, 345–355. DOI: 10.1016/j.matchemphys.2017.04.001.
  • Irfan, R. M.; Tahir, M. H.; Khan, S. A.; Shaheen, M. A.; Ahmed, G.; Iqbal, S. Enhanced Photocatalytic H2 Production under Visible Light on Composite Photocatalyst (CdS/NiSe Nanorods) Synthesized in Aqueous Solution. J. Colloid Interface Sci. 2019, 557, 1–9. DOI: 10.1016/j.jcis.2019.09.014.
  • Trang, T. N. Q.; Phan, T. B.; Nam, N. D.; Thu, V. T. H. In Situ Charge Transfer at the Ag@ZnO Photoelectrochemical Interface toward the High Photocatalytic Performance of H2 Evolution and RhB Degradation. ACS Appl. Mater. Interfaces 2020, 12, 12195–12206. DOI: 10.1021/acsami.9b15578.
  • Chandrappa, G. T.; Steunou, N.; Cassaignon, S.; Bauvais, C.; Livage, J. Hydrothermal Synthesis of Vanadium Oxide Nanotubes from V2O5 Gels. J. Catal. Today 2003, 78, 85–89., DOI: 10.1016/S0920-5861(02)00298-5.
  • Dutta, D. P.; Ballal, A.; Chopade, S.; Kumar, A. J. A Study on the Effect of Transition Metal (Ti4+, Mn2+, Cu2+ and Zn2+)-Doping on Visible Light Photocatalytic Activity of Bi2MoO6 Nanorods. Photochem. Photobiol. A 2017, 346, 105–112. DOI: 10.1016/j.jphotochem.2017.05.044.
  • Dutta, D. P.; Raval, P. J. Effect of Transition Metal Ion (Cr3+, Mn2+ and Cu2+) Doping on the Photocatalytic Properties of ZnWO4 Nanoparticles. Photochem. Photobiol. A 2018, 357, 193–200. DOI: 10.1016/j.jphotochem.2018.02.026.
  • Shandilya, P.; Mittal, D.; Sudhaik, A.; Soni, M.; Raizada, P.; Saini, A. K.; Singh, P. GdVO4 Modified Fluorine Doped Graphene Nanosheets as Dispersed Photocatalyst for Mitigation of Phenolic Compounds in Aqueous Environment and Bacterial Disinfection. Sep. Purif. Technol. 2019, 210, 804–816. DOI: 10.1016/j.seppur.2018.08.077.
  • Liu, C.; Zhang, Y.; Dong, F.; Du, X.; Huang, H. Easily and Synchronously Ameliorating Charge Separation and Band Energy Level in Porous g-C3N4 for Boosting Photooxidation and Photoreduction Ability. J. Phys. Chem. C 2016, 120, 10381–10389. DOI: 10.1021/acs.jpcc.6b01705.
  • Singh, P.; Shandilya, P.; Raizada, P.; Sudhaik, A.; Sani, A. R.; Bandegharaei, A. H. Review on Various Strategies for Enhancing Photocatalytic Activity of Graphene Based Nanocomposites for Water Purification. Arabian J. Chem. 2020, 13, 3498–3520. DOI: 10.1016/j.arabjc.2018.12.001.
  • Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. DOI: 10.1038/238037a0.
  • Pham, K.; Temerov, F.; Saarinen, J. Multicompound Inverse Opal Structures with Gold Nanoparticles for Visible Light Photocatalytic Activity. J. Mater. Des. 2020, 194, 108886. DOI: 10.1016/j.matdes.2020.108886.
  • Bahadur, A.; Hussain, W.; Iqbal, S.; Ullah, F.; Shoaib, M.; Liu, G.; Feng, K. A Morphology Controlled Surface Sulfurized CoMn2O4 Microspike Electrocatalyst for Water Splitting with Excellent OER Rate for Binder-Free Electrocatalytic Oxygen Evolution. J. Mater. Chem. A 2021, 9, 12255–12264. DOI: 10.1039/D0TA09430G.
  • Derikvandi, H.; Ejhieh, A. N. Synergistic Effect of p-n Heterojunction, Supporting and Zeolite Nanoparticles in Enhanced Photocatalytic Activity of NiO and SnO2. J. Colloid Interface Sci. 2017, 490, 314–327. DOI: 10.1016/j.jcis.2016.11.069.
  • Iqbal, S. Spatial Charge Separation and Transfer in L-Cysteine Capped NiCoP/CdS Nano-Heterojunction Activated with Intimate Covalent Bonding for High-Quantum-Yield Photocatalytic Hydrogen Evolution. Appl. Catal. B: Environ. 2020, 274, 119097.
  • Lin, Y.-C.; Peng, C.-K.; Lim, S.-C.; Chen, C.-L.; Nguyễn, T.-N.; Wang, T.-T.; Lin, M.-C.; Hsu, Y.-J.; Chen, S.-Y.; Lin, Y.-G. Tailoring the Surface Oxygen Engineering of a Carbon-Quantum-Dot-Sensitized ZnO@H-ZnO1-x Multijunction toward Efficient Charge Dynamics and Photoactivity Enhancement. Appl. Catal. B: Environ. 2021, 285, 119846. DOI: 10.1016/j.apcatb.2020.119846.
  • Jia, T.; Fu, F.; Li, J.; Deng, Z.; Long, F.; Yu, D.; Cui, Q.; Wang, W. Rational Construction of Direct Z-Scheme SnS/g-C3N4 Hybrid Photocatalyst for Significant Enhancement of Visible-Light Photocatalytic Activity. Appl. Surf. Sci. 2020, 499, 143941. DOI: 10.1016/j.apsusc.2019.143941.
  • Zhao, Z.; Sun, Y.; Dong, F. Graphitic Carbon Nitride Based Nanocomposites: A Review. Nanoscale 2015, 7, 15–37. DOI: 10.1039/c4nr03008g.
  • Mahana, A.; Guliy, O. I.; Momin, S.; Ch, Lalmuanzeli, R.; Mehta, S. K. Sunlight-Driven Photocatalytic Degradation of Methylene Blue Using ZnO Nanowires Prepared through Ultrasonication-Assisted Biological Process Using Aqueous Extract of Anabaena Doliolum. Opt. Mater. 2020, 108, 110205. DOI: 10.1016/j.optmat.2020.110205.
  • Kuang, P. Y.; Ran, J. R.; Liu, Z. Q.; Wang, H. J.; Li, N.; Su, Y. Z.; Jin, Y. G.; Qiao, S. Z. Enhanced Photoelectrocatalytic Activity of BiOI Nanoplate-Zinc Oxide Nanorod p-n Heterojunction. Chemistry 2015, 21, 15360–15368. DOI: 10.1002/chem.201501183.
  • Ali, H. S.; Alghamdi, A. S.; Murtaza, G.; Arif, H. S.; Naeem, W.; Farid, G.; Sharif, S.; Ashiq, M. G. B.; Shabbir, S. A. Facile Microemulsion Synthesis of Vanadium-Doped ZnO Nanoparticles to Analyze the Compositional, Optical, and Electronic Properties. Materials 2019, 12, 821. DOI: 10.3390/ma12050821.
  • Wang, J.; Xia, Y.; Dong, Y.; Chen, R.; Xiang, L.; Komarneni, S. Defect-Rich ZnO Nanosheets of High Surface Area as an Efficient Visible-Light Photocatalyst. Appl. Catal. B: Environ. 2016, 192, 8–16. DOI: 10.1016/j.apcatb.2016.03.040.
  • Iqbal, S.; Bahadur, A.; Javed, M.; Hakami, O.; Irfan, R. M.; Ahmad, Z.; AlObaid, A.; Anazy, M. M. A.; Baghdadi, H. B.; Rabboh, H. S. M. A.; et al. Design Ag-Doped ZnO Heterostructure Photocatalyst with Sulfurized Graphitic C3N4 Showing Enhanced Photocatalytic Activity. Mater. Sci. Eng. B 2021, 272, 115320. DOI: 10.1016/j.mseb.2021.115320.
  • Kong, X.; Liu, X.; Zheng, Y.; Chu, P. K.; Zhang, Y.; Wu, S. Graphitic Carbon Nitride-Based Materials for Photocatalytic Antibacterial Application. Mater. Sci. Eng. R 2021, 145, 100610. DOI: 10.1016/j.mser.2021.100610.
  • Yu, W.; Zhang, J.; Peng, T. New Insight into the Enhanced Photocatalytic Activity of N-, C- and S-Doped ZnO Photocatalysts. Appl. Catal. B: Environ. 2016, 181, 220–227. DOI: 10.1016/j.apcatb.2015.07.031.
  • Chen, M.; Dai, Y.; Guo, J.; Yang, H.; Liu, D.; Zhai, Y. Solvothermal Synthesis of Biochar@ZnFe2O4/BiOBr Z-Scheme Heterojunction for Efficient Photocatalytic Ciprofloxacin Degradation under Visible Light. Appl. Surf. Sci. 2019, 493, 1361–1367. DOI: 10.1016/j.apsusc.2019.04.160.
  • Liu, Y.; Zhang, Q.; Xu, M.; Yuan, H.; Chen, Y.; Zhang, J.; Luo, K.; Zhang, J.; You, B. Novel and Efficient Synthesis of Ag-ZnO Nanoparticles for the Sunlight-Induced Photocatalytic Degradation. Appl. Surf. Sci. 2019, 476, 632–640. DOI: 10.1016/j.apsusc.2019.01.137.
  • Iqbal, S.; Pan, Z.; Zhou, K. Enhanced Photocatalytic Hydrogen Evolution from in Situ Formation of Few-Layered MoS2/CdS Nanosheet-Based Van Der Waals Heterostructures. Nanoscale 2017, 9, 6638–6642. DOI: 10.1039/c7nr01705g.
  • Iqbal, S.; Bahadur, A.; Anwer, S.; Shoaib, M.; Liu, G.; Li, H.; Raheel, M.; Javed, M.; Khalid, B. Designing Novel Morphologies of l -Cysteine Surface Capped 2D Covellite (CuS) Nanoplates to Study the Effect of CuS Morphologies on Dye Degradation Rate under Visible Light. Cryst. Eng. Commun. 2020, 22, 4162–4173. DOI: 10.1039/D0CE00421A.
  • Li, H.; Li, M.; Kan, H.; Li, C.; Quan, A.; Fu, C.; Luo, J.; Liu, X.; Wang, W.; Yang, Z.; et al. Surface Acoustic Wave NO2 Sensors Utilizing Colloidal SnS Quantum Dot Thin Films. Surf. Coat. Technol. 2019, 362, 78–83. DOI: 10.1016/j.surfcoat.2019.01.100.
  • Muruganandam, S.; Murugadoss, G. Large- Scale Preparation of ZnS-ZnO-SnS Nanocomposites: Investigation on Structural and Optical Properties. Optik 2020, 220, 165187. DOI: 10.1016/j.ijleo.2020.165187.
  • Jayswal, S.; Moirangthem, R. S. Construction of a Solar Spectrum Active SnS/ZnO p–n Heterojunction as a Highly Efficient Photocatalyst: The Effect of the Sensitization Process on Its Performance. New J. Chem. 2018, 42, 13689–13701. DOI: 10.1039/C8NJ02098A.
  • Derikvandi, H.; Alireza, N. E. An Effective Wastewater Treatment Based on Sunlight Photodegradation by SnS2–ZnS/Clinoptilolite Composite. Solid State Sci. 2020, 101, 106127. DOI: 10.1016/j.solidstatesciences.2020.106127.
  • Binas, V.; Venieri, D.; Kotzias, D.; Kiriakidis, G. Modified TiO2 Based Photocatalysts for Improved Air and Health Quality. J. Materiomics 2017, 3, 3–16. DOI: 10.1016/j.jmat.2016.11.002.
  • Riaz, U.; Ashraf, S. M.; Kashyap, J. Role of Conducting Polymers in Enhancing TiO2 -Based Photocatalytic Dye Degradation: A Short Review. J. Polym. Plast. Technol. Eng. 2015, 54, 1850–1870., DOI: 10.1080/03602559.2015.1021485.
  • Rahimi, N.; Pax, R. A.; Gray, E. M. Review of Functional Titanium Oxides. I: TiO2 and Its Modifications. Prog. Solid. State Chem. 2016, 44, 86–105. DOI: 10.1016/j.progsolidstchem.2016.07.002.
  • Shi, W.; Duan, D.; Wang, H.; Ma, C.; Sun, Z.; Song, X. Improving the Photocatalytic Performance of a Sea-Cucumber-like Nanoporous TiO2 Loaded with Pt Ag for Water Splitting. Int. J. Hydrogen Energy 2019, 44, 13040–13051. DOI: 10.1016/j.ijhydene.2019.03.196.
  • Povar, I.; Spinu, O.; Zinicovscaia, I.; Pintilie, B.; Ubaldini, S. Revised Pourbaix Diagrams for the Vanadium – Water System. J. Electrochem. Sci. Eng. 2019, 9, 75–84. DOI: 10.5599/jese.620.
  • Aslam, M.; Ismail, I. M.; Salah, N.; Chandrasekaran, S.; Qamar, M. T.; Hameed, A. Evaluation of Sunlight Induced Structural Changes and Their Effect on the Photocatalytic Activity of V2O5 for the Degradation of Phenols. J. Hazard. Mater. 2015, 286, 127–135. DOI: 10.1016/j.jhazmat.2014.12.022.
  • Lee, H. Y.; Cheng, C. Y.; Lee, C. T. Bottom Gate Thin-Film Transistors Using Parallelly Lateral ZnO Nanorods Grown by Hydrothermal Method. Mater. Sci. Semicond. Process. 2020, 119, 105223. DOI: 10.1016/j.mssp.2020.105223.
  • Bu, I. Y. Y. Investigation of Novel Heterojunction: P-Type SnS Coated n-Type ZnO Nanowire. Superlattices Microstruct. 2015, 88, 704–710. DOI: 10.1016/j.spmi.2015.10.037.
  • Ullah, S.; Bouich, A.; Ullah, H.; Mari, B.; Mollar, M. Enhanced Optical and Structural Properties of V-Doped Binary SnS2 Buffer Layer. Sol. Energy 2020, 204, 654–659. DOI: 10.1016/j.solener.2020.04.095.
  • Khanchandani, S.; Kundu, S.; Patra, A.; Ganguli, A. K. Band Gap Tuning of ZnO/In2S3 Core/Shell Nanorod Arrays for Enhanced Visible-Light-Driven Photocatalysis. J. Phys. Chem. C 2013, 117, 5558–5567. DOI: 10.1021/jp310495j.
  • Rao, G. T.; Babu, B.; Stella, R. J.; Manjari, V. P.; Reddy, C. V.; Shim, J.; Ravikumar, R. V. S. S. N. Synthesis and Characterization of VO2+ Doped ZnO–CdS Composite Nanopowder. J. Mol. Struct. 2015, 1081, 254–259.
  • Aliaga, J.; Cifuentes, N.; Gonzalez, G.; Torres, C. S.; Benavente, E. Enhancement Photocatalytic Activity of the Heterojunction of Two-Dimensional Hybrid Semiconductors ZnO/V2O5. Catalysts 2018, 8, 374. DOI: 10.3390/catal8090374.
  • Shah, A. P.; Jain, S.; Mokale, V. J.; Shimpi, N. G. High Performance Visible Light Photocatalysis of Electrospun PAN/ZnO Hybrid Nanofibers. J. Ind. Eng. Chem. 2019, 77, 154–163. DOI: 10.1016/j.jiec.2019.04.030.
  • Xu, Y.; Liu, X.; Zheng, Y.; Changyi, L.; Yeung, K. W. K.; Cui, Z.; Liang, Y.; Li, Z.; Zhu, S.; Wu, S. Ag3PO4 Decorated Black Urchin-like Defective TiO2 for Rapid and Long-Term Bacteria-Killing under Visible Light. Bioact. Mater. 2021, 6, 1575–1587. DOI: 10.1016/j.bioactmat.2020.11.013.
  • Wang, H.; Yu, J.; Zhan, X.; Chen, L.; Sun, Y.; Shi, H. Direct 2D/2D Z-Scheme SnNb2O6/ZnO Hybrid Photocatalyst with Enhanced Interfacial Charge Separation and High Efficiency for Pollutants Degradation. Appl. Surf. Sci. 2020, 528, 146938. DOI: 10.1016/j.apsusc.2020.146938.
  • Lv, R.; Liang, Y. Q.; Li, Z. Y.; Zhu, S. L.; Cui, Z. D.; Wu, S. L. Flower-like CuS/Graphene Oxide with Photothermal and Enhanced Photocatalytic Effect for Rapid Bacteria-Killing Using Visible Light. Rare Met. 2022, 41, 639–649. DOI: 10.1007/s12598-021-01759-4.
  • Han, D.; Han, Y.; Li, J.; Liu, X.; Yeung, K. W. K.; Zheng, Y.; Cui, Z.; Yang, X.; Liang, Y.; Li, Z.; et al. Enhanced Photocatalytic Activity and Photo Thermal Effects of Cu-Doped Metal-Organic Frameworks for Rapid Treatment of Bacteria-Infected Wounds. Appl. Catal. B: Environ. 2020, 261, 118248.
  • Elsheikh, A. H.; Yu, J.; Sathyamurthy, R.; Tawfik, M. M.; Shanmugan, S.; Essa, F. A. Improving the Tribological Properties of AISI M50 Steel Using SnS/ZnO Solid Lubricants. J. Alloys Compd. 2020, 821, 153494. DOI: 10.1016/j.jallcom.2019.153494.
  • Chauhan, P. S.; Mishra, A.; Bhatt, G.; Bhattacharya, S. Enhanced He Gas Detection by V2O5-Noble Metal (Au, Ag, and Pd) Nanocomposite with Temperature Dependent n- to p-Type Transition. Mater. Sci. Semicond. Process. 2021, 123, 105528. DOI: 10.1016/j.mssp.2020.105528.
  • Oliveros, A. N.; Pimentel, J. A. I.; de Luna, M. D. G.; Segura, S. G.; Abarca, R. R. M.; Doong, R. A. Visible-Light Photocatalytic Diclofenac Removal by Tunable Vanadium Pentoxide/Boron-Doped Graphitic Carbon Nitride Composite. Chem. Eng. J. 2021, 403, 126213. DOI: 10.1016/j.cej.2020.126213.
  • Khanchandani, S.; Kundu, S.; Patra, A.; Ganguli, A. K. Shell Thickness Dependent Photocatalytic Properties of ZnO/CdS Core–Shell Nanorods. J. Phys. Chem. C 2012, 116, 23653–23662. DOI: 10.1021/jp3083419.
  • Bose, G. S. C.; Manjari, V. P.; Babu, B.; Ravikumar, R. V. S. S. N. Structural and Optical Investigations of VO(II) Ions Doped NaCaAlPO4F3 Phosphor. J. Mater. Sci.: Mater. Electron. 2015, 26, 2025–2032.
  • Krishna, C. R.; Ravikumar, R. V. S. S. N. Synthesis and Characterization of Vanadium Ions Containing Chlorocadmiumphosphate CdHPO4Cl·[H3N (CH2)6NH3]0.5 Crystals. Phys. B Condens. Matter. 2014, 433, 7–11. DOI: 10.1016/j.physb.2013.10.005.
  • Rajyalakshmi, T.; Basha, S. J.; Khidhirbrahmendra, V.; Thampy, U. S. U.; Ravikumar, R. V. S. S. N. Synthesis and Investigations for White LED Material: VO2+ Doped Calcium Cadmium Phosphate Hydrate Nanophosphor. J. Mol. Struct. 2020, 1205, 127605. DOI: 10.1016/j.molstruc.2019.127605.
  • Wang, C.; Li, J.; Liu, X.; Cui, Z.; Chen, D. F.; Li, Z.; Liang, Y.; Zhu, S.; Wu, S. The Rapid Photoresponsive Bacteria-Killing of Cu-Doped MoS2. Biomater. Sci. 2020, 8, 4216–4224. DOI: 10.1039/d0bm00872a.
  • Li, Y.; Liu, X.; Tan, L.; Cui, Z.; Yang, X.; Zheng, Y.; Yeung, K. W. K.; Chu, P. K.; Wu, S. Rapid Sterilization and Accelerated Wound Healing Using Zn2+ and Graphene Oxide Modified g-C3N4 under Dual Light Irradiation. Adv. Funct. Mater. 2018, 28, 1800299. DOI: 10.1002/adfm.201800299.
  • Ren, Y.; Han, Y.; Li, Z.; Liu, X.; Zhu, S.; Liang, Y.; Yeung, K. W. K.; Wu, S. Ce and Er Co-Doped TiO2 for Rapid Bacteria- Killing Using Visible Light. Bioact. Mater. 2020, 5, 201–209. DOI: 10.1016/j.bioactmat.2020.02.005.
  • Su, K.; Tan, L.; Liu, X.; Cui, Z.; Zheng, Y.; Li, B.; Han, Y.; Li, Z.; Zhu, S.; Liang, Y.; et al. Rapid Photo-Sonotherapy for Clinical Treatment of Bacterial Infected Bone Implants by Creating Oxygen Deficiency Using Sulfur Doping. ACS Nano 2020, 14, 2077–2089. DOI: 10.1021/acsnano.9b08686.
  • Rao, G. T.; Babu, B.; Stella, R. J.; Manjari, V. P.; Ravikumar, R. V. S. S. N. Spectral Investigations on Undoped and Cu2+ Doped ZnO-CdS Composite Nanopowders. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 139, 86–93. DOI: 10.1016/j.saa.2014.12.021.
  • Ghosh, B.; Das, M.; Banerjee, P.; Das, S. Fabrication and Optical Properties of SnS Thin Films by SILAR Method. Appl. Surf. Sci. 2008, 254, 6436–6440. DOI: 10.1016/j.apsusc.2008.04.008.
  • Lee, S. J.; Jung, H. J.; Ravindranadh, K.; Lee, S. H.; Arumugam, M.; Kim, J. H.; Choi, M. Y. ZnO Supported Au/Pd Bimetallic Nanocomposites for Plasmon Improved Photocatalytic Activity for Methylene Blue Degradation under Visible Light Irradiation. Appl. Surf. Sci. 2019, 496, 143665. DOI: 10.1016/j.apsusc.2019.143665.
  • Khaki, M. R. D.; Shafeeyan, M. S.; Raman, A. A. A.; Daud, W. M. A. W. Evaluating the Efficiency of Nano-Sized Cu Doped TiO2/ZnO Photocatalyst under Visible Light Irradiation. J. Mol. Liq. 2018, 258, 354–365. DOI: 10.1016/j.molliq.2017.11.030.
  • Pant, B.; Pant, H. R.; Barakat, N. A. M.; Park, M.; Jeon, K.; Choi, Y.; Kim, H. Y. Carbon Nanofibers Decorated with Binary Semiconductor (TiO2/ZnO) Nanocomposites for the Effective Removal of Organic Pollutants and the Enhancement of Antibacterial Activities. Ceram. Int. 2013, 39, 7029–7035. DOI: 10.1016/j.ceramint.2013.02.041.
  • Islam, M. R.; Rahman, M.; Farhad, S. F. U.; Podder, J. Structural, Optical and Photocatalysis Properties of Sol–Gel Deposited Al-Doped ZnO Thin Films. J. Surf. Interfaces 2019, 16, 120–126., DOI: 10.1016/j.surfin.2019.05.007.
  • Rao, G. T.; Ravikumar, R. V. S. S. N. Novel Fe-Doped ZnO-CdS Nanocomposite with Enhanced Visible Light-Driven Photocatalytic Performance. Mater. Res. Innov. 2021, 25, 215–220. DOI: 10.1080/14328917.2020.1774726.
  • Chen, D.; Wang, D.; Ge, Q.; Ping, G.; Fan, M.; Qin, L.; Bai, L.; Lv, C.; Shu, K. Graphene-Wrapped ZnO Nanospheres as a Photocatalyst for High Performance Photocatalysis. Thin Solid Films 2015, 574, 1–9. DOI: 10.1016/j.tsf.2014.11.051.
  • Pant, H. R.; Park, C. H.; Pant, B.; Tijing, L. D.; Kim, H. Y.; Kim, C. S. Synthesis, Characterization, and Photocatalytic Properties of ZnO Nano-Flower Containing TiO2 NPs. Ceram. Int. 2012, 38, 2943–2950. DOI: 10.1016/j.ceramint.2011.11.071.
  • Joshi, B. N.; Yoon, H.; Na, S. H.; Choi, J. Y.; Yoon, S. S. Enhanced Photocatalytic Performance of Graphene–ZnO Nanoplatelet Composite Thin Films Prepared by Electrostatic Spray Deposition. Ceram. Int. 2014, 40, 3647–3654. DOI: 10.1016/j.ceramint.2013.09.060.
  • Babu, B.; Harish, V. V. N.; Shim, J.; Reddy, C. V. Solution Combustion Synthesis of SnO2–NiO p–n Heterojunction Nanocomposite for Photocatalytic Application. J. Mater. Sci.: Mater. Electron. 2018, 29, 16988–16996.
  • Sajid, M. M.; Shad, N. A.; Javed, Y.; Khan, S. B.; Zhang, Z.; Amin, N.; Zhai, H. Preparation and Characterization of Vanadium Pentoxide (V2O5) for Photocatalytic Degradation of Monoazo and Diazo Dyes. Surf. Interfaces 2020, 19, 100502. DOI: 10.1016/j.surfin.2020.100502.
  • Stella, R. J.; Rao, G. T.; Manjari, V. P.; Babu, B.; Krishna, C. R.; Ravikumar, R. V. S. S. N. Structural and Optical Properties of CdO/ZnS Core/Shell Nanocomposites. J. Alloy. Compd. 2015, 628, 39–45. DOI: 10.1016/j.jallcom.2014.11.201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.