161
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and DFT supported spectroscopic characterization of a pyrazolone Schiff base complex of RuII-NO core

ORCID Icon & ORCID Icon
Pages 570-578 | Received 17 Jul 2021, Accepted 29 Dec 2022, Published online: 09 Jan 2023

References

  • Mjos, K. D.; Orvig, C. Metallodrugs in Medicinal Inorganic Chemistry. Chem. Rev. 2014, 114, 4540–4563. DOI: 10.1021/cr400460s.
  • Dasari, S.; Tchounwou, P. B. Cisplatin in Cancer Therapy: molecular Mechanisms of Action. Eur. J. Pharmacol. 2014, 740, 364–378. DOI: 10.1016/j.ejphar.2014.07.025.
  • Majid, S. A.; Mir, J. M.; Paul, S.; Akhter, M.; Parray, H.; Ayoub, R.; Shalla, A. H. Experimental and Molecular Topology-Based Biological Implications of Schiff Base Complexes: A Concise Review. Rev. Inorg. Chem 2019, 39, 113–128. DOI: 10.1515/revic-2018-0023.
  • Mir, J. M.; Majid, S. A.; Shalla, A. H. Enhancement of Schiff Base Biological Efficacy by Metal Coordination and Introduction of Metallic Compounds as Anticovid Candidates: A Simple Overview. Rev. Inorg. Chem 2021, 41, 199–211. DOI: 10.1515/revic-2020-0020.
  • Mohapatra, R. K.; El-Ajaily, M. M.; Alassbaly, F. S.; Sarangi, A. K.; Das, D.; Maihub, A. A.; Ben-Gweirif, S. F.; Mahal, A.; Suleiman, M.; Perekhoda, L.; et al. DFT, Anticancer, Antioxidant and Molecular Docking Investigations of Some Ternary Ni (II) Complexes with 2-[(E)-[4-(Dimethylamino) Phenyl] Methyleneamino] Phenol. Chem. Papers 2021, 75, 1005–1019. DOI: 10.1007/s11696-020-01342-8.
  • Sarangi, A. K.; Mahapatra, B. B.; Mohapatra, R. K.; Sethy, S. K.; Das, D.; Pintilie, L.; Kudrat‐E‐Zahan, M.; Azam, M.; Meher, H. Synthesis and Characterization of Some Binuclear Metal Complexes with a Pentadentate Azodye Ligand: An Experimental and Theoretical Study. Appl. Organomet. Chem. 2020, 34, e5693. DOI: 10.1002/aoc.5693.
  • Mohapatra, R. K.; Sarangi, A. K.; Azam, M.; El-Ajaily, M. M.; Kudrat-E-Zahan, M.; Patjoshi, S. B.; Dash, D. C. Synthesis, Structural Investigations, DFT, Molecular Docking and Antifungal Studies of Transition Metal Complexes with Benzothiazole Based Schiff Base Ligands. J. Mol. Struct 2019, 1179, 65–75. DOI: 10.1016/j.molstruc.2018.10.070.
  • L‐ajaily, M. M.; Sarangi, A. K.; Mohapatra, R. K.; Hassan, S. S.; Eldaghare, R. N.; Mohapatra, P. K.; Raval, M. K.; Das, D.; Mahal, A.; Cipurkovic, A.; Al‐Noor, T. H. Transition Metal Complexes of (E)‐2 ((2‐Hydroxybenzylidene) Amino‐3‐Mercaptopropanoic Acid: XRD, Anticancer, Molecular Modeling and Molecular Docking Studies. ChemistrySelect 2019, 4, 9999–10005. DOI: 10.1002/slct.201902306.
  • Sarangi, A. K.; Mahapatra, B. B.; Sethy, S. K. Synthesis and Characterization of Tetranuclear Metal Complexes with an Octadentate Azodye Ligand. Chemistry Africa 2018, 1, 17–28. DOI: 10.1007/s42250-018-0002-z.
  • El-Barasi, N. M.; Miloud, M. M.; El-Ajaily, M. M.; Mohapatra, R. K.; Sarangi, A. K.; Das, D.; Mahal, A.; Parhi, P. K.; Pintilie, L.; Barik, S. R.; Bitu, M. N. A. Synthesis, Structural Investigations and Antimicrobial Studies of Hydrazone Based Ternary Complexes with Cr(III), Fe(III) and La(III) Ions. J. Saudi Chem. Soc. 2020, 24, 492–503. DOI: 10.1016/j.jscs.2020.04.005.
  • Azam, M.; Al-Resayes, S. I.; Trzesowska-Kruszynska, A.; Kruszynski, R.; Wabaidur, S. M.; Soliman, S. M.; Mohapatra, R. K.; Khan, M. R. Dinuclear Uranyl Coordination Compound: Structural Investigations and Selective Fluorescence Sensing Properties. Polyhedron 2020, 189, 114745. DOI: 10.1016/j.poly.2020.114745.
  • Mohapatra, R. K.; Das, P. K.; El-Ajaily, M. M.; Mishra, U.; Dash, D. C. Synthesis, Spectral, Thermal, Kinetic and Antibacterial Studies of Transition Metal Complexes with Benzimidazolyl-2-Hydrazones of o-Hydroxyacetophenone, o-Hydroxybenzophenone and o-Vanillin. Bull. Chem. Soc. Ethiop 2018, 32, 437–450. DOI: 10.4314/bcse.v32i3.3.
  • De, S.; Jain, A.; Barman, P. Recent Advances in the Catalytic Applications of Chiral Schiff‐Base Ligands and Metal Complexes in Asymmetric Organic Transformations. ChemistrySelect 2022, 7, e202104334. DOI: 10.1002/slct.202104334.
  • Rakhtshah, J. A Comprehensive Review on the Synthesis, Characterization, and Catalytic Application of Transition-Metal Schiff-Base Complexes Immobilized on Magnetic Fe3O4 Nanoparticles. Coord. Chem. Rev 2022, 467, 214614. DOI: 10.1016/j.ccr.2022.214614.
  • Mir, J. M.; Maurya, R. C. Nitric Oxide Functionalized Molybdenum (0) Pyrazolone Schiff Base Complexes: thermal and Biochemical Study. RSC Adv. 2018, 8, 35102–35130. DOI: 10.1039/C8RA05956J.
  • Mir, J.; Malik, B. A.; Khan, M. W.; Maurya, R. C. Molybdenum Dinitrosyl Schiff Base Complexes of Dehydroacetic Acid and Thiourea Derivatives: DFT‐Experimental Characterization and Nosocomial anti‐Infectious Implications. J. Chinese Chem. Soc. 2019, 66, 651–659. DOI: 10.1002/jccs.201800337.
  • Yan, L.; Wang, L. H.; Tian, W. J.; Liu, X. F.; Li, Y. L.; Liu, X. H.; Jiang, Z. Q. Diiron Carbonyl Complexes Containing Bridging 1, 3-Bis (Diphenylphosphino) Propane or Monosubstituted Tris (3-Fluorophenyl) Phosphine: synthesis, Characterization, X-Ray Crystallography, and Electrochemistry. Inorg. Nano-Met. Chem. 2022, 52, 790–796. DOI: 10.1080/24701556.2021.1952257.
  • Mir, J. M.; Jain, N.; Jaget, P. S.; Khan, W.; Vishwakarma, P. K.; Rajak, D. K.; Malik, B. A.; Maurya, R. C. Urinary Tract anti-Infectious Potential of DFT-Experimental Composite Analyzed Ruthenium Nitrosyl Complex of N-Dehydroacetic Acid-Thiosemicarbazide. J. King Saud Univ.-Sci. 2019, 31, 89–100. DOI: 10.1016/j.jksus.2017.06.006.
  • Mir, J. M.; Maurya, R. C. A New Ru(II) Carbonyl Complex of 2-Benzoylpyridine: medicinal and Material Evaluation at the Computational–Experimental Convergence. J. Chinese Adv. Mat. Soc. 2018, 6, 156–168. DOI: 10.1080/22243682.2018.1442743.
  • Stepanenko, I.; Zalibera, M.; Schaniel, D.; Telser, J.; Arion, V. B. Ruthenium-Nitrosyl Complexes as NO-Releasing Molecules, Potential Anticancer Drugs, and Photoswitches Based on Linkage Isomerism. Dalton Trans. 2022, 51, 5367–5393. DOI: 10.1039/D2DT00290F.
  • Sharma, N.; Arjunan, P.; Marepally, S.; Jain, N.; Naziruddin, A. R.; Ghosh, A.; Mariappan, C. R.; Jose, D. A. Photo Controlled Release of Nitric Oxide (NO) from Amphiphilic and Nanoscale Vesicles Based Ruthenium Nitrosyl Complex: NO Release and Cytotoxicity Studies. J. Photochem. Photobiol. A: Chemistry 2022, 425, 113703. DOI: 10.1016/j.jphotochem.2021.113703.
  • El-Lateef, H. M. A.; Khalaf, M. M.; Shehata, M. R.; Abu-Dief, A. M. Fabrication, DFT Calculation, and Molecular Docking of Two Fe (III) Imine Chelates as anti-COVID-19 and Pharmaceutical Drug Candidate. Int. J. Mol. Sci 2022, 23, 3994. DOI: 10.3390/ijms23073994.
  • Abu-Dief, A. M.; El-Khatib, R. M.; El Sayed, S. M.; Alzahrani, S.; Alkhatib, F.; El-Sarrag, G.; Ismael, M. Tailoring, Structural Elucidation, DFT Calculation, DNA Interaction and Pharmaceutical Applications of Some Aryl Hydrazone Mn(II), Cu(II) and Fe(III) Complexes. J. Mol. Struct. 2021, 1244, 131017. DOI: 10.1016/j.molstruc.2021.131017.
  • Cho, J. H.; Kim, M.; You, Y.; Lee, H. I. A New Photoactivable NO‐Releasing {Ru − NO} 6 Ruthenium Nitrosyl Complex with a Tetradentate Ligand Containing Aniline and Pyridine Moieties. Chem. Asian J. 2022, 17, e202101244. DOI: 10.1002/asia.202101244.
  • Bélanger-Desmarais, N.; Gavriluta, A.; Tommasino, J. B.; Reber, C.; Luneau, D. Characteristic Vibrational Frequencies of Osmium (ii) Nitrosyl Complexes Probed by Raman Spectroscopy and DFT Calculations. New J. Chem 2022, 46, 9695–9703. DOI: 10.1039/D2NJ01713J.
  • Ferrarini, A.; Soek, R. N.; Rios, R. R.; Santana, F. S.; Campos, R. B.; da Silva, R. S.; Nunes, F. S. Structural, Spectral, and Photoreactivity Properties of Mono and Polymetallated-2, 2′-Bipyridine Ruthenium (II) Complexes. Inorg. Chim. Acta 2022, 533, 120771. DOI: 10.1016/j.ica.2021.120771.
  • Maurya, R. C.; Malik, B. A.; Mir, J. M.; Sharma, A. K. Synthesis, Characterization, Thermal Behavior, and DFT Aspects of Some Oxovanadium (IV) Complexes Involving ONO-Donor Sugar Schiff Bases. J. Coord. Chem. 2014, 67, 3084–3106. DOI: 10.1080/00958972.2014.959508.
  • Abu‐Dief, A. M.; Abdel‐Rahman, L. H.; Abdel‐Mawgoud, A. A. H. A Robust in Vitro Anticancer, Antioxidant and Antimicrobial Agents Based on New Metal‐Azomethine Chelates Incorporating Ag(I), Pd(II) and VO(II) Cations: Probing the Aspects of DNA Interaction. Appl. Organomet. Chem 2020, 34, e5373. DOI: 10.1002/aoc.5373.
  • Abu‐Dief, A. M.; El‐Sagher, H. M.; Shehata, M. R. Fabrication, Spectroscopic Characterization, Calf Thymus DNA Binding Investigation, Antioxidant and Anticancer Activities of Some Antibiotic Azomethine Cu(II), Pd(II), Zn(II) and Cr(III) Complexes. Appl. Organomet. Chem. 2019, 33, e4943. DOI: 10.1002/aoc.4943.
  • GaussView 5.0, Garnegieoffice. Park. Pittsburgh. PA: Gaussian Inc.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone Jr., V.; et al. Gaussian 09, Revision C.01; Wallingford, CT: Gaussian, Inc., 2010.
  • Maji, S.; Sarkar, B.; Mobin, S. M.; Fiedler, J.; Urbanos, F. A.; Jimenez-Aparicio, R.; Kaim, W.; Lahiri, G. K. Valence-State Alternatives in Diastereoisomeric Complexes [(Acac) 2Ru (μ-QL) Ru (Acac) 2] n (QL2− = 1, 4-Dioxido-9, 10-Anthraquinone, n= + 2,+ 1, 0,− 1,− 2). Inorg. Chem. 2008, 47, 5204–5211. DOI: 10.1021/ic800115q.
  • Chanda, N.; Mobin, S. M.; Puranik, V. G.; Datta, A.; Niemeyer, M.; Lahiri, G. K. Stepwise Synthesis of [Ru (Trpy)(L)(X)] n+(Trpy= 2, 2 ‘: 6 ‘, 2 ‘‘-Terpyridine; L= 2, 2 ‘-Dipyridylamine; X = Cl-, H2O, NO2-, NO+, O2-). Crystal Structure, Spectral, Electron-Transfer, and Photophysical Aspects. Inorg. Chem. 2004, 43, 1056–1064. DOI: 10.1021/ic034902n.
  • Sarkar, S.; Sarkar, B.; Chanda, N.; Kar, S.; Mobin, S. M.; Fiedler, J.; Kaim, W.; Lahiri, G. K. Complex Series [Ru (Tpy)(Dpk)(X)] n+(Tpy= 2, 2 ‘: 6 ‘, 2 ‘‘-Terpyridine; Dpk= 2, 2 ‘-Dipyridyl Ketone; X = Cl-, CH3CN, NO2-, NO+, NO•, NO-): Substitution and Electron Transfer, Structure, and Spectroscopy. Inorg. Chem. 2005, 44, 6092–6099. DOI: 10.1021/ic050533e.
  • De, P.; Mondal, T. K.; Mobin, S. M.; Sarkar, B.; Lahiri, G. K. {Ru–NO} 6 and {Ru–NO} 7 Configurations in [Ru (Trpy)(Tmp)(NO)] n+ (Trpy= 2, 2′: 6′, 2′′-Terpyridine, Tmp= 3, 4, 7, 8-Tetramethyl-1, 10-Phenanthroline): an Experimental and Theoretical Investigation. Inorg. Chim. Acta 2010, 363, 2945–2954. DOI: 10.1016/j.ica.2010.03.074.
  • Giri, B.; Saini, T.; Kumbhakar, S.; Selvan K, K.; Muley, A.; Misra, A.; Maji, S. Near-IR Light-Induced Photorelease of Nitric Oxide (NO) on Ruthenium Nitrosyl Complexes: formation, Reactivity, and Biological Effects. Dalton Trans. 2020, 49, 10772–10785. DOI: 10.1039/D0DT01788D.
  • Sekuła, K.; Wrzesień‐Tokarczyk, W.; Stanaszek, R.; Byrska, B.; Zuba, D. Analysis of Fragmentation Pathways of Fentanyl Derivatives by Electrospray Ionisation High‐Resolution Mass Spectrometry. Rapid Comm. Mass Spec 2022, 36, e9254.
  • Kumbhakar, S.; Gupta, P.; Giri, B.; Muley, A.; Karumban, K. S.; Misra, A.; Maji, S. Photolability of NO in Ruthenium Nitrosyls with Pentadentate Ligand Induces Exceptional Cytotoxicity towards VCaP, 22Rv1 and A549 Cancer Cells under Therapeutic Condition. J. Mol. Struct. 2022, 133419. DOI: 10.1016/j.molstruc.2022.133419.
  • Gansmüller, A.; Mikhailov, A. A.; Kostin, G. A.; Raya, J.; Palin, C.; Woike, T.; Schaniel, D. Solid-State Photo-NMR Study on Light-Induced Nitrosyl Linkage Isomers Uncovers Their Structural, Electronic, and Diamagnetic Nature. Anal. Chem 2022, 94, 4474–4483.
  • Wu, Y.; Wang, Y.; Sun, Y.; Li, Z.; Li, X.; Zhou, Z.; Tang, D. Dissociation of Bipyridine and Coordination with Nitrosyl: Cyclometalated Ruthenium Nitrosyl Complex. Inorg. Chem. 2022. DOI: 10.1021/acs.inorgchem.1c03770.
  • Han, G.; Li, G.; Huang, J.; Han, C.; Turro, C.; Sun, Y. Two-Photon-Absorbing Ruthenium Complexes Enable near Infrared Light-Driven Photocatalysis. Nature Comm. 2022, 13, 1–10.
  • Benniston, A. C.; Zeng, L. Recent Advances in Photorelease Complexes for Therapeutic Applications. Dalton Trans. 2022. DOI: 10.1039/D2DT00254J.
  • Liu, C.; Wang, Y.; Wang, A.; Su, F.; Wang, H. Structures, Spectral and Photodynamic Properties of Two Nitrosylruthenium (II) Isomer Complexes Containing 8-Quinolinolate and L-Proline Ligands. Results in Chem. 2022, 4, 100318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.