368
Views
3
CrossRef citations to date
0
Altmetric
Tutorial

Recent developments in statistical methods for GWAS and high-throughput sequencing association studies of complex traits

ORCID Icon &
Pages 132-159 | Received 09 May 2017, Accepted 23 Jul 2018, Published online: 08 Nov 2018

References

  • Torgerson DG, Ampleford EJ, Chiu GY, et al. Childhood Asthma Management Program, Meta-analysis of genome-wide association studies of asthma in ethnically diverse north American populations. Nat Genet. 2011;43(9):887–892.
  • Fuchsberger C, Flannick J, Teslovich TM, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536(7614):41–47.
  • Welter D, MacArthur J, Morales J, et al. The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42(D1):D1001–D1006.
  • The Network, Pathway Analysis Subgroup of the Psychiatric Genomics Consortium, et al. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci. 2015;18(2):199–209.
  • Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet. 2012;13(2):135–145.
  • Pongpanich M, Sullivan PF, Tzeng J-Y. A quality control algorithm for filtering SNPs in genome-wide association studies. Bioinformatics. 2010;26(14):1731–1737.
  • Teo YY, Fry AE, Clark TG, et al. On the usage of HWE for identifying genotyping errors. Ann Hum Genet. 2007;71(5):701–703.
  • Neale BM, Purcell S. The positives, protocols, and perils of genome-wide association. Am J Med Genet B Neuropsychiatr Genet. 2008;147(7):1288–1294.
  • International HapMap Consortium et al. A haplotype map of the human genome. Nature. 2005;437(7063):1299–1320.
  • 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.
  • Li Y, Willer C, Sanna S, et al. Genotype imputation. Annu Rev Genomics Hum Genet. 2009;10:387–406.
  • Aulchenko YS, Struchalin MV, van Duijn CM. Probabel package for genome-wide association analysis of imputed data. BMC Bioinformatics. 2010;11(1):134.
  • Marchini J, Howie B, Myers S, et al. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet. 2007;39(7):906–913.
  • Servin B, Stephens M. Imputation-based analysis of association studies: candidate regions and quantitative traits. PLoS Genet. 2007;3(7):e114.
  • Visscher PM, Brown MA, McCarthy MI, et al. Five years of GWAS discovery. Am J Hum Genet. 2012;90(1):7–24.
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B (Methodol). 1995;57(1):289–300.
  • Westfall PH, Young SS. Resampling-based multiple testing: examples and methods for P-value adjustment. Vol. 279. New York: John Wiley & Sons; 1993. New York.
  • Abney M. Permutation testing in the presence of polygenic variation. Genet Epidemiol. 2015;39(4):249–258.
  • Newman DL, Abney M, McPeek MS, et al. The importance of genealogy in determining genetic associations with complex traits. Am J Hum Genet. 2001;69(5):1146–1148.
  • Thornton T, McPeek MS. Case-control association testing with related individuals: a more powerful quasi-likelihood score test. Am J Hum Genet. 2007;81(2):321–337.
  • Abney M, Ober C, McPeek MS. Quantitative-trait homozygosity and association mapping and empirical genomewide significance in large, complex pedigrees: fasting serum-insulin level in the Hutterites. Am J Hum Genet. 2002;70(4):920–934.
  • Price AL, Patterson NJ, Plenge RM, et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38(8):904–909.
  • Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–959.
  • Zhu X, Zhang S, Zhao H, et al. Association mapping, using a mixture model for complex traits. Genet Epidemiol. 2002;23(2):181–196.
  • Chen H-S, Zhu X, Zhao H, et al. Qualitative semi-parametric test for genetic associations in case-control designs under structured populations. Ann Hum Genet. 2003;67(3):250–264.
  • Zhang S, Zhu X, Zhao H. On a semiparametric test to detect associations between quantitative traits and candidate genes using unrelated individuals. Genet Epidemiol. 2003;24(1):44–56.
  • Zhang J, Niyogi P, McPeek MS. Laplacian eigenfunctions learn population structure. PLoS ONE. 2009;4(12):e7928.
  • Lee AB, Luca D, Klei L, et al. Discovering genetic ancestry using spectral graph theory. Genet Epidemiol. 2010;34(1):51–59.
  • Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19(9):1655–1664.
  • Price AL, Zaitlen NA, Reich D, et al. New approaches to population stratification in genome-wide association studies. Nat Rev Genet. 2010;11(7):459–463.
  • Hoffman GE. Correcting for population structure and kinship using the linear mixed model: theory and extensions. PLoS ONE. 2013;8(10):e75707.
  • Thornton T, Tang H, Hoffmann TJ, et al. Estimating kinship in admixed populations. Am J Hum Genet. 2012;91(1):122–138.
  • Conomos MP, Laurie CA, Stilp AM, et al. Genetic diversity and association studies in US hispanic/latino populations: applications in the hispanic community health study/study of latinos. Am J Hum Genet. 2016;98(1):165–184.
  • Kang HM, Sul JH, Service SK, et al. Variance component model to account for sample structure in genome-wide association studies. Nat Genet. 2010;42(4):348–354.
  • Fisher RA. Xv.-The correlation between relatives on the supposition of mendelian inheritance. Trans R Soc Edinb. 1919;52(02):399–433.
  • Loh P-R, Tucker G, Bulik-Sullivan BK, et al. Efficient bayesian mixed-model analysis increases association power in large cohorts. Nat Genet. 2015;47(3):284–290.
  • Svishcheva GR, Axenovich TI, Belonogova NM, et al. Rapid variance components-based method for whole-genome association analysis. Nat Genet. 2012;44(10):1166–1170.
  • Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet. 2012;44(7):821–824.
  • Lippert C, Listgarten J, Liu Y, et al. Fast linear mixed models for genome-wide association studies. Nat Methods. 2011;8(10):833–835.
  • Yang J, Zaitlen NA, Goddard ME, et al. Advantages and pitfalls in the application of mixed-model association methods. Nat Genet. 2014;46(2):100–106.
  • Listgarten J, Lippert C, Kadie CM, et al. Improved linear mixed models for genome-wide association studies. Nat Methods. 2012;9(6):525–526.
  • Eu-Ahsunthornwattana J, Miller EN, Fakiola M, et al. Comparison of methods to account for relatedness in genome-wide association studies with family-based data. PLoS Genet. 2014;10(7):e1004445.
  • Jakobsdottir J, McPeek MS. MASTOR: mixed-model association mapping of quantitative traits in samples with related individuals. Am J Hum Genet. 2013;92(5):652–666.
  • Wright S. An analysis of variability in number of digits in an inbred strain of guinea pigs. Genetics. 1934;19(6):506–536.
  • Armitage P. Tests for linear trends in proportions and frequencies. Biometrics. 1955;11(3):375–386.
  • Nerlove M, James Press S. Univariate and multivariate log-linear and logistic models. Vol. 1306. Santa Monica, CA: Rand Corporation; 1973.
  • Jiang D, Mbatchou J, McPeek MS. Retrospective association analysis of binary traits: overcoming some limitations of the additive polygenic model. Hum Hered. 2015;80(4):187–195.
  • Chen H, Wang C, Conomos MP, et al. Control for population structure and relatedness for binary traits in genetic association studies via logistic mixed models. Am J Hum Genet. 2016;98(4):653–666.
  • Stanhope SA, Abney M. GLOGS: a fast and powerful method for GWAS of binary traits with risk covariates in related populations. Bioinformatics. 2012;28(11):1553–1554.
  • Rodriguez G, Goldman N. Improved estimation procedures for multilevel models with binary response: a case-study. J R Stat Soc A (Stat Soc). 2001;164(2):339–355.
  • Jiang D, Zhong S, McPeek MS. Retrospective binary-trait association test elucidates genetic architecture of crohn disease. Am J Hum Genet. 2016;98(2):243–255.
  • Zhong S, Jiang D, McPeek MS. CERAMIC: case-control association testing in samples with related individuals, based on retrospective mixed model analysis with adjustment for covariates. PLoS Genet. 2016;12(10):e1006329.
  • Wang M, Roux F, Bartoli C, et al. Two-way mixed-effects methods for joint association analysis using both host and pathogen genomes. Proc Natl Acad Sci. 2018;115(24):E5440–E5449.
  • Pirinen M, Donnelly P, Spencer CCA. Including known covariates can reduce power to detect genetic effects in case-control studies. Nat Genet. 2012;44(8):848–851.
  • Mefford J, Witte JS. The covariate's dilemma. PLoS Genet. 2012;8(11):e1003096.
  • Weissbrod O, Lippert C, Geiger D, et al. Accurate liability estimation improves power in ascertained case-control studies. Nat Methods. 2015;12(4):332–334.
  • Hayeck TJ, Loh P-R, Pollack S, et al. Mixed model association with family-biased case-control ascertainment. Am J Hum Genet. 2017;100(1):31–39.
  • Tucker G, Loh P-R, MacLeod IM, et al. Two-variance-component model improves genetic prediction in family datasets. Am J Hum Genet. 2015;97(5):677–690.
  • Sul JH, Bilow M, Yang W-Y, et al. Accounting for population structure in gene-by-environment interactions in genome-wide association studies using mixed models. PLoS Genet. 2016;12(3):e1005849.
  • Wang M, Jakobsdottir J, Smith AV, et al. G-STRATEGY: optimal selection of individuals for sequencing in genetic association studies. Genet Epidemiol. 2016;40(6):446–460.
  • Thornton T, McPeek MS. ROADTRIPS: case-control association testing with partially or completely unknown population and pedigree structure. Am J Hum Genet. 2010;86(2):172–184.
  • Song M, Hao W, Storey JD. Testing for genetic associations in arbitrarily structured populations. Nat Genet. 2015;47(5):550–554.
  • Eichler EE, Flint J, Gibson G, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11(6):446–450.
  • Schaid DJ, McDonnell SK, Hebbring SJ, et al. Nonparametric tests of association of multiple genes with human disease. Am J Hum Genet. 2005;76(5):780–793.
  • Wu MC, Kraft P, Epstein MP, et al. Powerful SNP-set analysis for case-control genome-wide association studies. Am J Hum Genet. 2010;86(6):929–942.
  • Pan W, Kwak I-Y, Wei P. A powerful pathway-based adaptive test for genetic association with common or rare variants. Am J Hum Genet. 2015;97(1):86–98.
  • Malo N, Libiger O, Schork NJ. Accommodating linkage disequilibrium in genetic-association analyses via ridge regression. Am J Hum Genet. 2008;82(2):375–385.
  • Basu S, Pan W, Shen X, et al. Multilocus association testing with penalized regression. Genet Epidemiol. 2011;35(8):755–765.
  • Wu TT, Chen YF, Hastie T, et al. Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics. 2009;25(6):714–721.
  • Hoggart CJ, Whittaker JC, De Iorio M, et al. Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies. PLoS Genet. 2008;4(7):e1000130.
  • Guan Y, Stephens M. Bayesian variable selection regression for genome-wide association studies and other large-scale problems. Ann Appl Stat. 2011;5(3):1780–1815.
  • Hung H, Lin Y-T, Chen P, et al. Detection of gene–gene interactions using multistage sparse and low-rank regression. Biometrics. 2015;72(1):85–94.
  • Solovieff N, Cotsapas C, Lee PH, et al. Pleiotropy in complex traits: challenges and strategies. Nat Rev Genet. 2013;14(7):483–495.
  • Cotsapas C, Voight BF, Rossin E, et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 2011;7(8):e1002254.
  • Bush WS, Oetjens MT, Crawford DC. Unravelling the human genome-phenome relationship using phenome-wide association studies. Nat Rev Genet. 2016;17(3):129–145.
  • Ferreira MAR, Purcell SM. A multivariate test of association. Bioinformatics. 2009;25(1):132–133.
  • Stephens M. A unified framework for association analysis with multiple related phenotypes. PLoS ONE. 2013;8(7):e65245.
  • Dahl A, Iotchkova V, Baud A, et al. A multiple-phenotype imputation method for genetic studies. Nat Genet. 2016;48(4):466–472.
  • Zhou X, Stephens M. Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat Methods. 2014;11(4):407–409.
  • Kang HM, Zaitlen NA, Wade CM, et al. Efficient control of population structure in model organism association mapping. Genetics. 2008;178(3):1709–1723.
  • Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–753.
  • Nelson MR, Wegmann D, Ehm MG, et al. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science. 2012;337(6090):100–104.
  • Kryukov GV, Pennacchio LA, Sunyaev SR. Most rare missense alleles are deleterious in humans: implications for complex disease and association studies. Am J Hum Genet. 2007;80(4):727–739.
  • Zhu Q, Ge D, Maia JM, et al. A genome-wide comparison of the functional properties of rare and common genetic variants in humans. Am J Hum Genet. 2011;88(4):458–468.
  • MacArthur DG, Balasubramanian S, Frankish A, et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science. 2012;335(6070):823–828.
  • Rivas MA, Beaudoin M, Gardet A, et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet. 2011;43(11):1066–1073.
  • Gudmundsson J, Sulem P, Gudbjartsson DF, et al. A study based on whole-genome sequencing yields a rare variant at 8q24 associated with prostate cancer. Nat Genet. 2012;44(12):1326–1329.
  • Peloso GM, Auer PL, Bis JC, et al. Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. Am J Hum Genet. 2014;94(2):223–232.
  • Bansal V, Libiger O, Torkamani A, et al. Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet. 2010;11(11):773–785.
  • Auer PL, Lettre G. Rare variant association studies: considerations, challenges and opportunities. Genome Med. 2015;7(1):16.
  • Nicolae DL. Association tests for rare variants. Annu Rev Genomics Hum Genet. 2016;17:117–130.
  • Morgenthaler S, Thilly WG. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat Res. 2007;615(1-2):28–56.
  • Li B, Leal SM. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet. 2008;83(3):311–321.
  • Madsen BE, Browning SR. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet. 2009;5(2):e1000384.
  • Price AL, Kryukov GV, de Bakker PIW, et al. Pooled association tests for rare variants in exon-resequencing studies. Am J Hum Genet. 2010;86(6):832–838.
  • Morris AP, Zeggini E. An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genet Epidemiol. 2010;34(2):188–193.
  • Sul JH, Han B, He D, et al. An optimal weighted aggregated association test for identification of rare variants involved in common diseases. Genetics. 2011;188(1):181–188.
  • Asimit JL, Day-Williams AG, Morris AP, et al. ARIEL and AMELIA: testing for an accumulation of rare variants using next-generation sequencing data. Hum Hered. 2012;73(2):84–94.
  • Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the sift algorithm. Nat Protoc. 2009;4(7):1073–1081.
  • Lee S, Emond MJ, Bamshad MJ, et al. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet. 2012;91(2):224–237.
  • Neale BM, Rivas MA, Voight BF, et al. Testing for an unusual distribution of rare variants. PLoS Genet. 2011;7(3):e1001322.
  • Jiang D, McPeek MS. Robust rare variant association testing for quantitative traits in samples with related individuals. Genet Epidemiol. 2014;38(1):10–20.
  • Han F, Pan W. A data-adaptive sum test for disease association with multiple common or rare variants. Hum Hered. 2010;70(1):42–54.
  • Hoffmann TJ, Marini NJ, Witte JS. Comprehensive approach to analyzing rare genetic variants. PLoS ONE. 2010;5(11):e13584.
  • Lin D-Y, Tang Z-Z. A general framework for detecting disease associations with rare variants in sequencing studies. Am J Hum Genet. 2011;89(3):354–367.
  • Yi N, Zhi D. Bayesian analysis of rare variants in genetic association studies. Genet Epidemiol. 2011;35(1):57–69.
  • Derkach A, Lawless JF, Sun L, et al. Pooled association tests for rare genetic variants: a review and some new results. Stat Sci. 2014;29(2):302–321.
  • Pan W. Asymptotic tests of association with multiple SNPs in linkage disequilibrium. Genet Epidemiol. 2009;33(6):497–507.
  • King CR, Rathouz PJ, Nicolae DL. An evolutionary framework for association testing in resequencing studies. PLoS Genet. 2010;6(11):e1001202.
  • Wu MC, Lee S, Cai T, et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet. 2011;89(1):82–93.
  • Zhan X, Plantinga A, Zhao N, et al. A fast small-sample kernel independence test for microbiome community-level association analysis. Biometrics. 2017;73(4):1453–1463.
  • Wu MC, Maity A, Lee S, et al. Kernel machine SNP-set testing under multiple candidate kernels. Genet Epidemiol. 2013;37(3):267–275.
  • Mukhopadhyay I, Feingold E, Weeks DE, et al. Association tests using kernel-based measures of multi-locus genotype similarity between individuals. Genet Epidemiol. 2010;34(3):213–221.
  • Derkach A, Lawless JF, Sun L. Robust and powerful tests for rare variants using fisher's method to combine evidence of association from two or more complementary tests. Genet Epidemiol. 2013;37(1):110–121.
  • Wang Y, Chen Y-H, Yang Q. Joint rare variant association test of the average and individual effects for sequencing studies. PLoS ONE. 2012;7(3):e32485.
  • Sun J, Zheng Y, Hsu L. A unified mixed-effects model for rare-variant association in sequencing studies. Genet Epidemiol. 2013;37(4):334–344.
  • Chen LS, Hsu L, Gamazon ER, et al. An exponential combination procedure for set-based association tests in sequencing studies. Am J Hum Genet. 2012;91(6):977–986.
  • Donoho D, Jin J. Higher criticism for detecting sparse heterogeneous mixtures. Ann Stat. 2004;32(3):962–994.
  • Wu Z, Sun Y, He S, et al. Detection boundary and higher criticism approach for rare and weak genetic effects. Ann Appl Stat. 2014;8(2):824–851.
  • Barnett IJ, Lin X. Analytic p-value calculation for the higher criticism test in finite d problems. Biometrika. 2014;101(4):964–970.
  • Mukherjee R, Pillai NS, Lin X. Hypothesis testing for high-dimensional sparse binary regression. Ann Stat. 2015;43(1):352–381.
  • Barnett I, Mukherjee R, Lin X. The generalized higher criticism for testing SNP-set effects in genetic association studies. J Am Stat Assoc. 2017;112(517):64–76.
  • Kazma R, Bailey JN. Population-based and family-based designs to analyze rare variants in complex diseases. Genet Epidemiol. 2011;35(S1):S41–S47.
  • Uricchio LH, Chong JX, Ross KD, et al. Accurate imputation of rare and common variants in a founder population from a small number of sequenced individuals. Genet Epidemiol. 2012;36(4):312–319.
  • Gusev A, Shah MJ, Kenny EE, et al. Low-pass genome-wide sequencing and variant inference using identity-by-descent in an isolated human population. Genetics. 2012;190(2):679–689.
  • Roach JC, Glusman G, Smit AF, et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science. 2010;328(5978):636–639.
  • Zhou B, Whittemore AS. Improving sequence-based genotype calls with linkage disequilibrium and pedigree information. Ann Appl Stat. 2012;6(2):457–475.
  • Chen H, Meigs JB, Dupuis J. Sequence kernel association test for quantitative traits in family samples. Genet Epidemiol. 2013;37(2):196–204.
  • Schaid DJ, McDonnell SK, Sinnwell JP, et al. Multiple genetic variant association testing by collapsing and kernel methods with pedigree or population structured data. Genet Epidemiol. 2013;37(5):409–418.
  • Choi S, Lee S, Cichon S, et al. FARVAT: a family-based rare variant association test. Bioinformatics. 2014;30(22):3197–3205.
  • Zhu Y, Xiong M. Family-based association studies for next-generation sequencing. Am J Hum Genet. 2012;90(6):1028–1045.
  • Ionita-Laza I, Lee S, Makarov V, et al. Family-based association tests for sequence data, and comparisons with population-based association tests. Eur J Hum Genet. 2013;21(10):1158–1162.
  • De G, Yip W-K, Ionita-Laza I, et al. Rare variant analysis for family-based design. PLoS ONE. 2013;8(1):e48495.
  • He Z, O'Roak BJ, Smith JD, et al. Rare-variant extensions of the transmission disequilibrium test: application to autism exome sequence data. Am J Hum Genet. 2014;94(1):33–46.
  • Wang X, Zhang Z, Morris N, et al. Rare variant association test in family-based sequencing studies. Brief Bioinform. 2016;18(6):954–961.
  • Sung YJ, Korthauer KD, Swartz MD, et al. Methods for collapsing multiple rare variants in whole-genome sequence data. Genet Epidemiol. 2014;38(S1):S13–S20.
  • Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–249.
  • Wang K, Li M, Hakonarson H. Annovar: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164–e164.
  • Sunyaev SR. Inferring causality and functional significance of human coding dna variants. Hum Mol Genet. 2012;21(R1):R10–R17.
  • Tennessen JA, Bigham AW, O'Connor TD, et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2012;337(6090):64–69.
  • Mathieson I, McVean G. Differential confounding of rare and common variants in spatially structured populations. Nat Genet. 2012;44(3):243–246.
  • Liu Q, Nicolae DL, Chen LS. Marbled inflation from population structure in gene-based association studies with rare variants. Genet Epidemiol. 2013;37(3):286–292.
  • O'Connor TD, Kiezun A, Bamshad M, et al. Fine-scale patterns of population stratification confound rare variant association tests. PLoS ONE. 2013;8(7):e65834.
  • Thornton TA. Statistical methods for genome-wide and sequencing association studies of complex traits in related samples. Curr Protoc Hum Genet. 2015;84:1.28.1–1.28.9.
  • Pulit SL, de Bakker PIW, et al. The multiple testing burden in sequencing-based disease studies of global populations. bioRxiv; 2016. p. 053264.
  • Sobota RS, Shriner D, Kodaman N, et al. Addressing population-specific multiple testing burdens in genetic association studies. Ann Hum Genet. 2015;79(2):136–147.
  • Fadista J, Manning AK, Florez JC, et al. The (in) famous GWAS P-value threshold revisited and updated for low-frequency variants. Eur J Hum Genet. 2016;24(8):1202–1205.
  • Moutsianas L, Agarwala V, Fuchsberger C, et al. The power of gene-based rare variant methods to detect disease-associated variation and test hypotheses about complex disease. PLoS Genet. 2015;11(4):e1005165.
  • Greenwood CMT, Xu C, Ciampi A. Significance thresholds for rare variant signals. In Zeggini E, Morris A, editors. Assessing rare variation in complex traits. New York: Springer; 2015. p. 169–183.
  • Xu C, Tachmazidou I, Walter K, et al. Estimating genome-wide significance for whole-genome sequencing studies. Genet Epidemiol. 2014;38(4):281–290.
  • Ionita-Laza I, Rogers AJ, Lange C, et al. Genetic association analysis of copy-number variation (CNV) in human disease pathogenesis. Genomics. 2009;93(1):22–26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.