17,568
Views
23
CrossRef citations to date
0
Altmetric
U.S. Department of Veterans Affairs Panel on Statistics and Analytics on Healthcare Datasets: Challenges and Recommended Strategies

Statistical modeling methods: challenges and strategies

, &
Pages 105-139 | Received 13 Jun 2018, Accepted 24 Apr 2019, Published online: 22 Jul 2019

References

  • Agresti A. Categorical data analysis. 2nd ed. New York: Wiley-Interscience; 2002.
  • Rencher AC, Christensen WF. Methods of multivariate analysis. 3rd ed. Hoboken (NJ): Wiley; 2012.
  • Christensen R. Log-linear models and logistic regression. New York: Springer-Verlag; 1997.
  • Fox J. Applied regression analysis and generalized linear models. 3rd ed. Los Angeles (CA): SAGE; 2015.
  • Draper NR, Smith H. Applied regression analysis. 3rd ed. New York: Wiley; 1998.
  • Harrell FE. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2001.
  • Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. New York: Springer; 2009.
  • Steyerberg EW. Clinical prediction models: a practical approach to development, validation, and updating. 1st; Reprint ed. New York: Springer; 2010.
  • Royston P, Sauerbrei W. Multivariate model-building: a pragmatic approach to regression analysis based on fractional polynomials for modelling continuous variables. New York: John Wiley & Sons; 2008.
  • Hastie T, Tibshirani R. Generalized additive models. 1st ed. New York: Chapman and Hall; 1990.
  • McCullagh P, Nelder JA. Generalized linear models. 2nd ed. London; New York: Chapman and Hall; 1989.
  • Hosmer DW, Lemeshow S, Sturdivant RX. Applied logistic regression. 3rd ed. New York: Wiley-Interscience; 2013.
  • Hosmer DW, Lemeshow S, May S. Applied survival analysis: regression modeling of time-to-event data. 2nd ed. Hoboken (NJ): Wiley-Interscience; 2008.
  • Zar JH. Biostatistical analysis. 5th ed. New York: Pearson; 2009.
  • Gentle JE. Elements of computational statistics. New York: Springer-Verlag; 2002.
  • Vittinghoff E, Glidden DV, Shiboski SC, et al. Regression methods in biostatistics: linear, logistic, survival, and repeated measures models. 2nd ed. New York: Springer; 2012.
  • Daniel WW, Cross CL. Biostatistics: a foundation for analysis in the health sciences. 11th ed. Hoboken (NJ): John Wiley & Sons; 2019.
  • White H. Estimation, inference, and specification analysis. Cambridge; New York: Cambridge University Press; 1994.
  • White H. Asymptotic theory for econometricians. Revised ed. New York: Academic Press; 2001.
  • Eddy DM, Hollingworth W, Caro JJ, et al. Model transparency and validation: a report of the ISPOR-SMDM modeling good research practices task force–7. Value Health. 2012;15(6):843–850.
  • Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMC Med. 2015;13:1.
  • Depaoli S, van de Schoot R. Improving transparency and replication in Bayesian statistics: the WAMBS-checklist. Psychol Methods. 2017;22(2):240–261.
  • Thiese MS, Arnold ZC, Walker SD. The misuse and abuse of statistics in biomedical research. Biochem Med. 2015;25(1):5–11.
  • Caro JJ, Briggs AH, Siebert U, et al. Modeling good research practices–overview: a report of the ISPOR-SMDM modeling good research practices task force–1. Value Health. 2012;15(6):796–803.
  • Wei B. Exponential family nonlinear models. New York: Springer; 1998.
  • Bishop C. Neural networks for pattern recognition. New York: Oxford University Press; 1995.
  • Golden RM. Mathematical methods for neural network analysis and design. Cambridge (MA): MIT Press; 1996.
  • Duda RO, Hart PE, Stork DG. Pattern classification. 2nd ed. New York: Wiley-Interscience; 2000.
  • Bishop CM. Pattern recognition and machine learning. 1st (reprint) ed. New York: Springer; 2016.
  • Murphy KP. Machine learning: a probabilistic perspective. 1st ed. Cambridge (MA): The MIT Press; 2012.
  • Zheng A, Casari A. Feature engineering for machine learning: principles and techniques for data scientists. 1st ed. Sebastopol (CA): O’Reilly Media; 2018.
  • Guyon I, Elisseff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;3:1157–1182.
  • Kuhn A, Johnson K. Applied predictive modeling. New York: Springer; 2013.
  • Collett D. Modelling binary data. 2nd ed. Boca Raton (FL): Chapman & Hall/CRC; 2003.
  • Dobson AJ, Barnett A. An introduction to generalized linear models. 3rd ed. Boca Raton (FL): Chapman & Hall/CRC; 2008.
  • Seber GAF, Wild CJ. Nonlinear regression; Hoboken (NJ): Wiley-Interscience; 2003.
  • Hardin JW, Hilbe JM. Generalized linear models and extensions. 3rd ed. College Station (TX): Stata Press; 2012.
  • Hilbe JM. Logistic regression models. New York: Chapman and Hall; 2009.
  • Weisberg S. Applied linear regression. 4th ed. Hoboken (NJ): Wiley; 2013.
  • Zhou X-H, Zhou C, Lui D, et al. Applied missing data analysis in the health sciences. 1st ed. Hoboken (NJ): Wiley; 2014.
  • Little RJA, Rubin DB. Statistical analysis with missing data. 2nd ed. Hoboken (NJ): Wiley-Interscience; 2002.
  • Schafer JL. Analysis of incomplete multivariate data. New York: Chapman & Hall/CRC; 1997.
  • Allison PD. Missing data. Thousand Oaks (CA): Sage; 2001.
  • Golden RM, Henley SS, White H, et al. Consequences of model misspecification for maximum likelihood estimation with missing data. Econometrics. 2019;7(3):37. doi:10.3390/econometrics7030037.
  • Zhou Z-H. Challenges and strategies in analysis of missing data. Biostat Epidemiol. 2020;4(1):15–23. doi:10.1080/24709360.2018.1469810.
  • Cook RD, Weisberg S. Applied regression including computing and graphics. 1st ed. New York: Wiley-Interscience; 1999.
  • Cook RD, Weisberg S. Residuals and influence in regression. 1st ed. New York: Chapman and Hall/CRC; 1983.
  • Fox J. Regression diagnostics: an introduction (quantitative applications in the social sciences). 1st ed. Newbury Park (CA): SAGE; 1991.
  • Hamilton LC. Regression with graphics: a second course in applied statistics. Pacific Grove, CA: Brooks/Cole; 1992.
  • Belsley DA, Kuh E, Welsch RE. Regression diagnostics: identifying influential data and sources of collinearity. 1st ed. New York: Wiley-Interscience; 1980.
  • Wasserman L. All of nonparametric statistics. New York: Springer; 2007.
  • Corder GW, Foreman DI. Nonparametric statistics: a step-by-step approach. 2nd ed. Hoboken (NJ): Wiley; 2014.
  • Hollander M, Wolfe DA, Chicken E. Nonparametric statistical methods. 3rd ed. New York: John Wiley & Sons; 2014.
  • Kashner TM, Henley SS, Golden RM, Zhou Z-HA. Making causal inferences about treatment effect sizes from observational datasets. Biostat Epidemiol. 2020;4(1):48–83. doi:10.1080/24709360.2019.1681211.
  • Pearl J. Causal diagrams for empirical research. Biometrika. 1995;82:669–688.
  • Pearl J. Causality: models, reasoning, and inference. Cambridge: University of Cambridge Press; 2000.
  • VanderWeele TJ, Robins JM. Directed acyclic graphs, sufficient causes, and the properties of conditioning on a common effect. Am J Epidemiol. 2007;166(9):1096–1104.
  • Hoeting JA, Madigan D, Raftery AE, et al. Bayesian model averaging: a tutorial. Stat Sci. 1999;14(4):382–401.
  • Garcia-Perez MA. Statistical conclusion validity: some common threats and simple remedies. Front Psychol. 2012;3(325). doi: 10.3389/fpsyg.2012.00325
  • Cook TD, Campbell DT. Quasi-experimentation: design & analysis issues for field settings. 1st ed. Boston (MA): Houghton Mifflin; 1979.
  • Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. 2nd ed. New York: Springer; 2002.
  • Burnham KP, Anderson DR. Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res. 2004;33(2):261–304.
  • Claeskens G, Hjort NL. Model selection and model averaging. Cambridge; New York: Cambridge University Press; 2008.
  • Steckler A, McLeroy KR. The importance of external validity. Am J Public Health. 2008;98(1):9–10.
  • Persaud N, Mamdani MM. External validity: the neglected dimension in evidence ranking. J Eval Clin Pract. 2006;12(4):450–453.
  • Maronna RA, Martin RD, Yohai VJ, et al. Robust statistics: theory and methods (with R). 2nd ed. Hoboken (NJ): John Wiley & Sons; 2019.
  • Pearl J, Bareinboim E. External validity: from do-calculus to transportability across populations. Stat Sci. 2014;29(4):579–595.
  • Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information. Ann Intern Med. 1999;130(6):515–524.
  • Altman DG, Royston P. What do we mean by validating a prognostic model? Stat Med. 2000;19(4):453–473.
  • Khorsan R, Crawford C. How to assess the external validity and model validity of therapeutic trials: a conceptual approach to systematic review methodology. Evid Based Compl Altern Med. 2014;2014:1–12.
  • Steyerberg EW, Harrell FE, Borsboom GJ, et al. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol. 2001;54(8):774–781.
  • Brakenridge SC, Phelan HA, Henley SS, et al. Early blood product and crystalloid volume resuscitation: risk association with multiple organ dysfunction after severe blunt traumatic injury. J Trauma. 2011;71(2):299–305.
  • Brakenridge SC, Henley SS, Kashner TM, et al. Comparing clinical predictors of deep venous thrombosis vs. pulmonary embolus after severe blunt injury: a new paradigm for post-traumatic venous thromboembolism? J Trauma. 2013;74(5):1231–1237.
  • Westover AN, Kashner TM, Winhusen TM, et al. A systematic approach to subgroup analyses in a smoking cessation trial. Am J Drug Alcohol Abuse. 2015;41(6):498–507.
  • Henley SS, Kashner TM, Golden RM, et al. Response to letter regarding “a systematic approach to subgroup analyses in a smoking cessation trial”. Am J Drug Alcohol Abuse. 2016;42(1):112–113.
  • Gorelick DA, McPherson S. Improving the analysis and modeling of substance use. Am J Drug Alcohol Abuse. 2015;41(6):475–478.s
  • Volkow ND. Director’s report to the national advisory council on drug abuse, September 2015. US National Institutes of Health: National Institute on Drug Abuse; 2015.
  • Winhusen TM, Somoza EC, Brigham GS, et al. Impact of attention-deficit/hyperactivity disorder (ADHD) treatment on smoking cessation intervention in ADHD smokers: a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry. 2010;71(12):1680–1688.
  • Golden RM, Henley SS, White H, et al. Generalized information matrix tests for detecting model misspecification. Econometrics. 2016;4(4):46.
  • Golden RM, Henley SS, White H, et al. New directions in information matrix testing: eigenspectrum tests. In: Chen X, Swanson NR, editors. Causality, prediction, and specification analysis: recent advances and future directions: essays in honor of Halbert L. White, Jr. (Festschrift Hal White Conference). New York: Springer; 2013. p. 145–178.
  • White H. Maximum likelihood estimation of misspecified models. Econometrica. 1982;50(1):1–25.
  • Bates DM, Watts DG. Nonlinear regression analysis and its applications. New York: Wiley-Interscience; 2007.
  • Hemmert GAJ, Schons LM, Wieseke J, et al. Log-likelihood-based pseudo-R2 in logistic regression: deriving sample-sensitive benchmarks. Sociol Methods Res. 2016;47(3):507–531.
  • Kullback S, Leibler R. On information and sufficiency. Ann Math Stat. 1951;22:79–86.
  • Akaike H. Information theory and an extension of the maximum likelihood principle. Second International Symposium on Information Theory; 1973; Budapest.
  • Linhart H, Zucchini W. Model selection. New York: Wiley; 1986.
  • Konishi S, Kitagawa G. Information criteria and statistical modeling. New York: Springer; 2008.
  • Hurvich CM, Tsai C-L. Regression and time series model selection in small samples. Biometrika. 1989;76(2):297–307.
  • Hurvich CM, Tsai CL. A corrected Akaike information criterion for vector autoregressive model selection. J Time Ser Anal. 1993;14:271–279.
  • Schwartz G. Estimating the dimension of a model. Ann Stat. 1978;6:461–464.
  • Ando T. Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models. Biometrika. 2007;94(2):443–458.
  • Ando T. Predictive Bayesian model selection. Am J Math Manage Sci. 2011;31:13–38.
  • Bozdogan H. Akaike’s information criterion and recent developments in information complexity. J Math Psychol. 2000;44(1):62–91.
  • Takeuchi K. Distribution of information statistics and a criterion of model fitting for adequacy of models. Math Sci. 1976;153:12–18.
  • Djuric PM. Asymptotic MAP criteria for model selection. IEEE Trans Signal Process. 1998;46:2726–2735.
  • Lv J, Liu JS. Model selection principles in misspecified models. J R Stat Soc Series BStat Methodol. 2014;76(1):141–167.
  • Poskitt DS. Precision, complexity and Bayesian model determination. J R Stat Soc Series B Methodol. 1987;49(2):199–208.
  • Cavanaugh JE. A large-sample model selection criterion based on Kullback’s symmetric divergence. Stat Probab Lett. 1999;42:333–343.
  • Seghouane AK. A note on overfitting properties of KIC and KICc. Signal Process. 2006;86:3055–3060.
  • White H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica. 1980;48(4):817–838.
  • White H. Consequences and detection of misspecified nonlinear regression models. J Am Stat Assoc. 1981;76:419–433.
  • Begg MD, Lagakos S. On the consequences of model misspecification in logistic regression. Environ Health Perspect. 1990;87:69–75.
  • Lehmann EL. Model specification: the views of Fisher and Neyman, and later developments. Stat Sci. 1990;5:160–168.
  • Godfrey LG. Misspecification tests in econometrics: the Lagrange multiplier principle and other approaches. Cambridge, MA: Cambridge University Press; 1989.
  • Gelman A, Hill J. Data analysis using regression and multilevel/hierarchical models. Cambridge, MA: Cambridge University Press; 2006.
  • Davison AC, Tsai CL. Regression model diagnostics. Int Stat Rev. 1992;60:337–353.
  • Cook RD. Detection of influential observation in linear regression. Technometrics. 1977;19(1):15–18.
  • Hodge VJ, Austin J. A survey of outlier detection methodologies. Artif Intell Rev. 2004;22(2):85–126.
  • Rousseeuw P, Leroy A. Robust regression and outlier detection. 3rd ed. New York: John Wiley & Sons; 1996.
  • White H. Specification testing in dynamic models. Advances in Econometrics - Fifth World Congress; 1987.
  • Wilks SS. The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann Math Stat. 1938;9:60–62.
  • Davies N, Petruccelli JD. Detecting non-linearity in time series. J R Stat Soc Series D Stat. 1986;35(2):271–280.
  • Hosmer DW, Taber S, Lemeshow S. The importance of assessing the fit of logistic regression models: a case study. Am J Public Health. 1991;81:1630–1635.
  • Hosmer DW, Hosmer T, Le Cessie S, et al. A comparison of goodness-of-fit tests for the logistic regression model. Stat Med. 1997;16:965–980.
  • Allison PD. Measures of fit for logistic regression. Paper 1485-2014. SAS Global Forum; 2014; Washington (DC).
  • Xie XJ. Goodness-of-fit tests for logistic regression models: evaluating logistic model fit when continuous covariates are present. Riga: VDM Verlag Dr. Mueller E.K.; 2008.
  • Hosmer DW, Hjort NL. Goodness-of-fit processes for logistic regression: simulation results. Stat Med. 2002;21(18):2723–2738.
  • Kuss O. Global goodness-of-fit tests in logistic regression with sparse data. Stat Med. 2002;21:3789–3801.
  • Cho JS, Phillips PCB. Pythagorean generalization of testing the equality of two symmetric positive definite matrices. J Econom. 2018;202(1):45–56.
  • Prokhorov A, Schepsmeier U, Zhu Y. Generalized information matrix tests for copulas. Econom Rev. 2019; in press.
  • Huang W, Prokhorov A. A goodness-of-fit test for copulas. Econom Rev. 2014;33(7):751–771.
  • Cho J, Phillips PCB. Testing equality of covariance matrices via Pythagorean means. Cowles Foundation Discussion Paper No. 1970; 2014.
  • Ibragimov R, Prokhorov A. Heavy tails and copulas: topics in dependence modelling in economics and finance. Hackensack (NJ): World Scientific Publishing; 2017.
  • Schepsmeier U. Efficient information based goodness-of-fit tests for vine copula models with fixed margins: a comprehensive review. J Multivar Anal. 2015;138:34–52.
  • Schepsmeier U. A goodness-of-fit test for regular vine copula models. Econom Rev. 2016;38(1):25–46.
  • Hall A. The information matrix test for the linear model. Rev Econ Stud. 1987;54:257–263.
  • Nelder JA, Wedderburn RWM. Generalized linear models. J R Stat Soc Series A. 1972;135:370–384.
  • Golden RM. Making correct statistical inferences using a wrong probability model. J Math Psychol. 1995;39(1):3–20.
  • Archer KJ, Lemeshow S. Goodness-of-fit test for a logistic regression model fitted using survey sample data. Stata J. 2006;6:97–105.
  • Copas JB. Unweighted sum of squares test for proportions. Appl Stat. 1989;38:71–80.
  • Deng X, Wan S, Zhang B. An improved goodness-of-test for logistic regression models based on case-control data by random partition. Commun Stat Simul Comput. 2009;38:233–243.
  • Hosmer DW, Lemeshow S, Klar J. Goodness-of-fit testing for multiple logistic regression analysis when the estimated probabilities are small. Biom J. 1988;30(7):1–14.
  • Hosmer DW, Lemeshow S. A goodness-of-fit test for the multiple logistic regression model. Commun Stat. 1980;9:1043–1069.
  • Qin J, Zhang B. A goodness-of-fit test for logistic regression models based on case-control data. Biometrika. 1997;84:609–618.
  • Tsiatis AA. A note on a goodness-of-fit test for the logistic regression model. Biometrika. 1980;67:250–251.
  • Zhang B. A chi-squared goodness-of-fit test for logistic regression models based on case-control data. Biometrika. 1999;86:531–539.
  • Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361–387.
  • Breusch TS, Pagan AR. Simple test for heteroscedasticity and random coefficient variation. Econometrica. 1979;47(5):1287–1294.
  • Durbin J, Watson GS. Testing for serial correlation in least squares regression. Biometrika. 1971;58(1):1–19.
  • White KJ. The Durbin-Watson test for autocorrection in nonlinear models. Rev Econ Stat. 1992;74(2):370–373.
  • Hendry DF, Richard J-F. On the formulation of empirical models in dynamic econometrics. J Econom. 1982;20:3–33.
  • Paul P, Pennell ML, Lemeshow S. Standardizing the power of the Hosmer-Lemeshow goodness of fit test in large data sets. Stat Med. 2013;32(1):67–80.
  • Davidson J. Econometric theory. Malden (MA): Wiley-Blackwell; 2000.
  • Ljung GM, Box GEP. On a measure of a lack of fit in time series models. Biometrika. 1978;65(2):297–303.
  • Golden RM. Discrepancy risk model selection test theory for comparing possibly misspecified or nonnested models. Psychometrika. 2003;68(2):229–249.
  • Vuong QH. Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica. 1989;57:307–333.
  • Golden RM. Statistical tests for comparing possibly misspecified and nonnested models. J Math Psychol. 2000;44(1):153–170.
  • Rivers D, Vuong Q. Model selection tests for nonlinear dynamic models. Economet J. 2002;5:1–39.
  • Feng ZD, McCulloch CE. Using bootstrap likelihood ratios in finite mixture models. J R Stat Soc Series B Methodol. 1996;58(3):609–617.
  • Tekle FB, Gudicha DW, Vermunt JK. Power analysis for the bootstrap likelihood ratio test for the number of classes in latent class models. Adv Data Anal Classif. 2016;10(2):209–224.
  • Gray HL, Baek J, Woodward WA, et al. A bootstrap generalized likelihood ratio test in discriminant analysis. Comput Stat Data Anal. 1996;22(2):137–158.
  • McLachlan GJ. On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture. J R Stat Soc Series C Appl Stat. 1987;36(3):318–324.
  • Lo Y, Mendell NR, Rubin DB. Testing the number of components in a normal mixture. Biometrika. 2001;88(3):767–778.
  • Gibbons JD, Chakraborti S. Nonparametric statistical inference. 4th ed. New York: Chapman and Hall/CRC; 2003.
  • Serfling RJ. Approximation theorems of mathematical statistics. 2nd ed. New York: Wiley-Interscience; 1980.
  • Bagdonavicius V, Kruopis J, Nikulin MS. Non-parametric tests for complete data. London & Hoboken: Wiley-ISTE; 2011.
  • Kanji GK. 100 statistical tests. 3rd ed. Thousand Oaks, CA: SAGE; 2006.
  • Barnett V, Lewis T. Outliers in statistical data. 3rd ed. New York: Wiley; 1994.
  • Iglewicz B, Hoaglin DC. How to detect and handle outliers. Milwaukee (WI): American Society for Quality Control Press; 1993.
  • Anderson TW, Darling DA. Asymptotic theory of certain “goodness-of-fit” criteria based on stochastic processes. Ann Math Stat. 1952;23:193–212.
  • Justel A, Peña D, Zamar R. A multivariate Kolmogorov–Smirnov test of goodness of fit. Stat Probab Lett. 1997;35(3):251–259.
  • Kolmogorov AN. Sulla Determinazione Empirica di una Legge di Distribuzione. Giornale dell’Istituto Italiano degli Attuari. 1933;4:83–91.
  • Smirnov N. Table for estimating the goodness of fit of empirical distributions. Ann Math Stat. 1948;19:279–281.
  • Zhao D, Bu L, Alippi C, et al. A Kolmogorov-Smirnov test to detect changes in stationarity in big data. IFAC PapersOnLine. 2017;50(1):14260–14265.
  • Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika. 1965;52(3–4):591–611.
  • Kendall M. Rank correlation methods. Oxford: Charles Griffin & Company Limited; 1948.
  • Kendall M. A new measure of rank correlation. Biometrika. 1938;30(1–2):81–93.
  • Well AD, Myers JL. Research design and statistical analysis. 3rd ed. New York: Routledge; 2010.
  • Cook RD. Regression graphics: ideas for studying regressions through graphics. 1st ed. New York: Wiley-Interscience; 1998.
  • Kashner TM, Hinson R, Holland G, et al. A data accounting system for clinical investigators. J Am Med Inform Assoc. 2007;14(4):394–396.
  • Osborne JW. Best practices in data cleaning: a complete guide to everything you need to do before and after collecting your data. 1st ed. Thousand Oaks (CA): SAGE Publications; 2013.
  • Box GEP, Cox DR. An analysis of transformations. J R Stat Soc Series B. 1964;26(2):211–252.
  • Kashner TM, Henley SS, Golden RM, et al. Assessing the preventive effects of cognitive therapy following relief of depression: a methodological innovation. J Affect Disord. 2007;104(1–3):251–261.
  • Kashner TM, Henley SS, Golden RM, et al. Studying the effects of ACGME duty hours limits on resident satisfaction: results from VA learners’ perceptions survey. Acad Med. 2010;85(7):1130–1139.
  • Jaccard J, Turris R. Interaction effects in multiple regression. (NY): SAGE; 2003.
  • Box GEP. Do interactions matter? Qual Eng. 1990;2:365–369.
  • Balli HO, Sørensen BE. Interaction effects in econometrics. Empir Econ. 2013;45(1):583–603.
  • Aiken LS, West SG. Multiple regression: testing and interpreting interactions. Thousand Oaks (CA): Sage; 1991.
  • Cox DR. Interaction. Int Stat Rev / Revue Internationale de Statistique. 1984;52(1):1–24.
  • Greenland S. Tests for interaction in epidemiologic studies: a review and a study of power. Stat Med. 1983;2(2):243–251.
  • Hayes AF, Matthes J. Computational procedures for probing interactions in OLS and logistic regression: SPSS and SAS implementations. Behav Res Methods. 2009;41(3):924–936.
  • Stone-Romero EF, Anderson LE. Relative power of moderated multiple regression and the comparison of subgroup correlation coefficients for detecting moderator effects. J Appl Psychol. 1994;79:354–359.
  • George EI, Clyde M. Model uncertainty. Stat Sci. 2004;19(1):81–94.
  • Draper D. Assessment and propagation of model uncertainty. J R Stat Soc Series B Methodol. 1995;57(1):45–97.
  • Greenland S. Modeling and variable selection in epidemiologic analysis. Am J Public Health. 1989;79(3):340–349.
  • George EI. The variable selection problem. J Am Stat Assoc. 2000;95(452):1304–1308.
  • Kosorok MR, Ma S. Marginal asymptotics for the “large p, small n” paradigm: with applications to microarray data. Ann Stat. 2007;35(4):1456–1486.
  • Fan J, Lv J. Sure independence screening for ultrahigh dimensional feature space. J R Stat Soc Series B Stat Methodol. 2008;70(5):849–911.
  • Fan Y, Tang CY. Tuning parameter selection in high dimensional penalized likelihood. J R Stat Soc Series B Stat Methodol. 2013;75(3):531–552.
  • Wasserman L, Roeder K. High-dimensional variable selection. Ann Stat. 2009;37(5A):2178–2201.
  • Buhlmann P, van de Geer S. Statistics for high-dimensional data: methods, theory, and applications. New York: Springer; 2011.
  • West M. Bayesian factor regression models in the “large p, small n” paradigm. In: Bernardo JM, Bayarri MJ, Berger JO, et al., editors. Bayesian statistics. London: Oxford University Press; 2003. p. 723–732.
  • Johnstone IM, Titterington DM. Statistical challenges of high-dimensional data. Philos Trans Series A Math Phys Eng Sci. 2009;367(1906):4237–4253.
  • Tibshirani R. Regression shrinkage and selection via the LASSO. J R Stat Soc Series B. 1996;58:267–288.
  • Hastie T, Tibshirani R, Tibshirani RJ. Extended comparisons of best subset selection, forward stepwise selection, and the lasso. arXiv:1707.08692v2 [stat.ME]; 2017.
  • Efroymson MA. Multiple regression analysis. In: Ralston A, Wilf HS, editors. Mathematical methods for digital computers. New York: Wiley; 1960. p. 191–203.
  • Miller AJ. Subset selection in regression. 2nd ed. Boca Raton: Chapman & Hall/CRC; 2002.
  • Furnival GM. All possible regressions with less computation. Technometrics. 1971;13(2):403–408.
  • Furnival GM, Wilson RW. Regression by leaps and bounds. Technometrics. 1974;16:499–511.
  • Gatu C, Kontoghiorghes EJ. Branch-and-bound algorithms for computing the best-subset regression models. J Comput Graph Stat. 2006;15(1):139–156.
  • Hand DJ. Branch and bound in statistical data. J R Stat Soc Series D Stat. 1981;30(1):1–13.
  • Hans C, Dobra A, West M. Shotgun stochastic search for “large p” regression. J Am Stat Assoc. 2007;102(478):507–516.
  • Cai A, Tsay RS, Chen R. Variable selection in linear regression with many predictors. J Comput Graph Stat. 2009;18(3):573–591.
  • George EI, McCulloch RE. Variable selection via Gibbs sampling. J Am Stat Assoc. 1993;88:881–889.
  • Han C, Carlin BP. Markov chain Monte Carlo methods for computing Bayes factors: a comparative review. J Am Stat Assoc. 2001;96(455):1122–1132.
  • Hocking R. The analysis and selection of variables in linear regression. Biometrics. 1976;32:1–49.
  • Garside MJ. The best sub-set in multiple-regression analysis. R Stat Soc Series C Appl Stat. 1965;14(2–3):196–200.
  • Schatzoff M, Tsao R, Fienberg S. Efficient calculation of all possible regressions. Technometrics. 1968;10(4):769.
  • Bertsimas D, King A, Mazumder R. Best subset selection via a modern optimization lens. Ann Stat. 2016;44(2):813–852.
  • Bertsimas D, King A. Logistic regression: from art to science. Stat Sci. 2017;32(3):367–384.
  • Hosmer DW, Jovanovic B, Lemeshow S. Best subsets logistic regression. Biometrics. 1989;45(4):1265–1270.
  • Edwards D, Havranek T. A fast model selection procedure for large families of models. J Am Stat Assoc. 1987;82(397):205–213.
  • Edwards D, Havranek T. A fast procedure for model search in multidimensional contingency tables. Biometrika. 1985;72(2):339–351.
  • Lawless JF, Singhal K. Efficient screening of nonnormal regression models. Biometrics. 1978;34(2):318–327.
  • LaMotte LR, Hocking R. Computational efficiency in the selection of regression variables. Technometrics. 1970;12(1):83–93.
  • Brusco MJ, Stahl S. Branch-and-Bound applications in Combinatorial data analysis. New York: Springer-Verlag; 2005.
  • Gatu C, Kontoghiorghes EJ. Efficient strategies for deriving the subset VAR models. Comput Manage Sci. 2005;2(4):253–278.
  • Gatu C, Kontoghiorghes EJ, Gilli M, et al. An efficient branch-and-bound strategy for subset vector autoregressive model selection. J Econ Dynam Control. 2008;32(6):1949–1963.
  • Winkler G. Image analysis, random fields, and dynamic Monte Carlo methods. New York: Springer-Verlag; 1991.
  • Gilks WR, Richardson S, Spiegelhalter DJ, editors. Markov Chain Monte Carlo in practice. Boca Raton (FL): Chapman & Hall/CRC; 1996.
  • Geyer C. Practical Markov chain Monte Carlo. Stat Sci. 1992;7(4):473–483.
  • Gamerman D, Lopes HF. Markov Chain Monte Carlo: stochastic simulation for Bayesian inference. 2nd ed. New York: Chapman & Hall/CRC; 2006.
  • Neal RM. Probabilistic inference using Markov Chain Monte Carlo methods, technical report CRG-TR-93-1. Toronto: Department of Computer Science, University of Toronto; 1993.
  • Gelfand AE, Smith AFM. Sampling-based approaches to calculating marginal densities. J Am Stat Assoc. 1990;85(410):398–409.
  • George EI, McCulloch RE. Approaches for Bayesian variable selection. Stat Sin. 1997;7:339–373.
  • Madigan D, Raftery AE. Model selection and accounting for model uncertainty in graphical models using Occam’s window. J Am Stat Assoc. 1994;89(428):1535–1546.
  • Raftery AE, Zheng Y. Long-run performance of Bayesian model averaging. Seattle: University of Washington; 2003.
  • Wang D, Lertsithichai P, Nanchahal K, et al. Risk factors of coronary heart disease: A Bayesian model averaging approach. J Appl Stat. 2003;30(7):813–826.
  • Wang D, Zhang W, Bakhai A. Comparison of Bayesian model averaging and stepwise methods for model selection in logistic regression. Stat Med. 2004;23(22):3451–3467.
  • Viallefont V, Raftery AE, Richardson S. Variable selection and Bayesian model averaging in case-control studies. Stat Med. 2001;20(21):3215–3230.
  • Genell A, Nemes S, Steineck G, et al. Model selection in medical research: a simulation study comparing Bayesian model averaging and stepwise regression. BMC Med Res Methodol. 2010;10:108.
  • Wilson MA, Iversen ES, Clyde MA, et al. Bayesian model search and multilevel inference for SNP association studies. Ann Appl Stat. 2010;4(3):1342–1364.
  • Volinsky CT, Madigan D, Raftery AE, et al. Bayesian model averaging in proportional hazard models. assessing the risk of a stroke. Appl Stat J R Stat Soc Series C. 1997;46(4):433–448.
  • Regal RR, Hook EB. The effects of model selection on confidence-intervals for the size of a closed population. Stat Med. 1991;10(5):717–721.
  • Vock DM, Atchison EA, Legler JM, et al. Accounting for model uncertainty in estimating global burden of disease. Bull World Health Organ. 2011;89(2):112–120.
  • Montgomery JM, Nyhan B. Bayesian model averaging: theoretical developments and practical applications. Polit Anal. 2010;18(2):245–270.
  • Ando T, Tsay R. Predictive likelihood for Bayesian model selection and averaging. Int J Forecast. 2010;26(4):744–763.
  • Prost L, Makowski D, Jeuffroy M. Comparison of stepwise selection and Bayesian model averaging for yield gap analysis. Ecol Modell. 2008;219(1–2):66–76.
  • Yang X, Belin TR, Boscardin WJ. Imputation and variable selection in linear regression models with missing covariates. Biometrics. 2005;61(2):498–506.
  • Jackson CH, Thompson SG, Sharples LD. Accounting for uncertainty in health economic decision models by using model averaging. J R Stat Soc Series A Stat Soc. 2009;172:383–404.
  • Morales KH, Ibrahim JG, Chen C-J, et al. Bayesian model averaging with applications to benchmark dose estimation for arsenic in drinking water. J Am Stat Assoc. 2006;101(473):9–17.
  • Clyde M. Bayesian model averaging and model search strategies. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM, editors. Bayesian statistics 6. London: Oxford University Press; 1999. p. 157–185.
  • Raftery AE, Madigan D, Hoeting JA. Bayesian model averaging for linear regression models. J Am Stat Assoc. 1997;92:179–191.
  • Burnham KP, Anderson DR. Model selection and inference: a practical information-theoretic approach. New York: Springer; 1998.
  • Buckland ST, Burnham KP, Augustin NH. Model selection: an integral part of inference. Biometrics. 1997;53(2):603–618.
  • Wang H, Zhang X, Zou G. Frequentist model averaging estimation: a review. J Syst Sci Complex. 2009;22(4):732–748.
  • Ullah A, Wang H. Parametric and nonparametric frequentist model selection and model averaging. Econometrics. 2013;1:157–179.
  • Barr J, Cavanaugh J. Forensics: assessing model goodness: a machine learning view. Encyclopedia Semant Comput Robot Intell. 2018;2(2):1850015.
  • Russell SJ, Norvig P. Artificial intelligence: a modern approach. New Jersey: Prentice Hall; 2003.
  • Picard R, Cook D. Cross-validation of regression models. J Am Stat Assoc. 1984;79(387):575–583.
  • Stone M. Cross-validatory choice and assessment of statistical predictions. J R Stat Soc Series B. 1974;36:111–133.
  • Efron B, Tibshirani R. An introduction to the bootstrap. New York: Chapman & Hall/CRC; 1993.
  • Anderson TW. An introduction to multivariate statistical analysis. New York: John Wiley & Sons; 2003.
  • Gordon AD. Classification. 2nd ed. New York: Chapman & Hall/CRC; 1999.
  • Huberty CJ. Applied discriminant analysis. New York: John Wiley & Sons; 1994.
  • Krzanowski WJ. Principles of multivariate analysis: a user’s perspective. New York: Oxford University Press; 2000.
  • Huber PJ, Ronchetti EM. Robust statistics. 2nd ed. New York: John Wiley & Sons; 2009.
  • de Myttenaere A, Golden B, Le Grand B, et al. Mean absolute percentage error for regression models. Neurocomputing. 2016;192:38–48.
  • Tarpey T. A note on the prediction sum of squares statistic for restricted least squares. Am Stat. 2000;54(2):116–118.
  • Allen DM. The relationship between variable selection and data augmentation and a method for prediction. Technometrics. 1974;16:125–127.
  • Pepe MS. The statistical evaluation of medical tests for classification and prediction. Oxford: Oxford University Press; 2004.
  • Sokolova M, Lapalme G. A systematic analysis of performance measures for classification tasks. Inform Process Manage. 2009;45(4):427–437.
  • UCI machine learning repository. Irvine (CA): University of California, School of Information and Computer Science; 2017. Available from: http://archive.ics.uci.edu/ml.
  • Wickens TD. Elementary signal detection theory. New York: Oxford University Press; 2002.
  • Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. 2006;27:861–874.
  • Metz CE. Basic principles of ROC analyses. Semin Nucl Med. 1978;8:283–298.
  • Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem. 1993;39(4):561–577.
  • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36.
  • DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–845.
  • King G, Zeng L. Logistic regression in rare events data. Polit Anal. 2001;9:137–163.
  • Berger JO. Statistical decision theory and Bayesian analysis. 2nd ed. New York: Springer-Verlag; 1985.
  • Aitchison J. Goodness of prediction fit. Biometrika. 1975;62:547–554.
  • Harris IR. Predictive fit for natural exponential families. Biometrika. 1989;76(4):675–684.
  • Vidoni P. Improved predictive model selection. J Stat Plan Inference. 2008;138:3713–3721.
  • Fushiki T, Komaki F, Aihara K. Nonparametric bootstrap prediction. Bernoulli. 2005;11(2):293–307.
  • Ng A, Jordan MI. On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes. NIPS; 2001.
  • Schölkopf B, Smola AJ. Learning with kernels: support vector machines, regularization, optimization and beyond. Cambridge (MA): MIT Press; 2001.
  • Smola AJ, Bartlett PJ, Schölkopf B, et al. Advances in large-margin classifiers. Cambridge, MA: MIT Press; 2000.
  • Perkins NJ, Schisterman EF. The Youden index and the optimal cut-point corrected for measurement error. Biom J. 2005;47(4):428–441.
  • Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3:32–35.
  • Baldi P, Brunak S, Chauvin Y, et al. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics. 2000;16:412–424.
  • Fletcher RH, Fletcher SW. Clinical epidemiology: the essentials. 4th ed. Baltimore (MD): Lippincott Williams & Wilkins; 2005.
  • Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20(1):37–46.
  • Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta. 1975;405(2):442–451.
  • Cramér H. Mathematical methods of statistics. Princeton: Princeton University Press; 1946.
  • Sasaki Y. The truth of the F-measure. Manchester: School of Computer Science, University of Manchester; 2007.
  • Powers DMW. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & correlation. J Mach Learn Technol. 2011;2(1):37–63.
  • Magder LS, Fix AD. Optimal choice of a cut point for a quantitative diagnostic test performed for research purposes. J Clin Epidemiol. 2003;56(10):956–962.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.