778
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Comparative analysis of epidemiological models for COVID-19 pandemic predictions

ORCID Icon, ORCID Icon &
Pages 69-91 | Received 22 Sep 2020, Accepted 04 Apr 2021, Published online: 19 May 2021

References

  • Peeri NC, Shrestha N, Rahman MS, et al. The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? Int J Epidemiol. 2020.
  • Yi Y, Lagniton PN, Ye S, et al. COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int J Biol Sci. 2020;16(10):1753.
  • India Tv. Coronavirus cases worldwide cross 7.5 million mark, June 2020 [Online]. Available: https://www.indiatvnews.com/news/world/ coronavirus-cases-worldwide-country-wise-list-covid-19-death-toll- 625469.
  • Adam D. Modelers struggle to predict the future of the COVID-19 pandemic, March 2020 [Online]. Available: https://www.the-scientist.com/news-opinion/modelers-struggle-to-predict-the-future-of-the-covid-19-pandemic-67261.
  • Alimadadi A, Aryal S, Manandhar I, et al. Artificial intelligence and machine learning to fight COVID-19, Journals.physiology.org, 2020. [Online] DOI:10.1152/physiolgenomics.00029.2020.
  • Gani J. Daniel Bernoulli. In: Statisticians of the centuries. New York, NY: Springer; 2001. p. 64–67. [online]. Available: https://books.google.co.in/books?id=nAPrBwAAQBAJ.
  • Dukic V, Lopes HF, Polson NG. Tracking epidemics with Google flu trends data and a state-space SEIR model. J Am Stat Assoc. 2012;107(500):1410–1426. doi:10.1080/01621459.2012.713876.
  • Feng Z. Final and peak epidemic sizes for SEIR models with quarantine and isolation. Math Biosci Eng. 2007;4(4):675–686. doi:10.3934/mbe.2007.4.675.
  • Anderson RM, May RM. Regulation and stability of host-parasite population interactions. I. Regulatory processes. J Anim Ecol. 1978;47(1):219–247.
  • Liu WM, Hethcote HW, Levin SA. Dynamical behavior of epidemiological models with nonlinear incidence rates. J Math Biol. 1987;25(4):359–380. doi:10.1007/BF00277162.
  • Sparks RS, Keighley T, Muscatello D. Early warning CUSUM plans for surveillance of negative binomial daily disease counts. J Appl Stat. 2010;37(11):1911–1929. doi:10.1080/02664760903186056.
  • Leung CS, Patel MS, McGilchrist CA. A distribution-free regional cumulative sum for identifying hyperendemic periods of disease incidence. J R Stat Soc Ser D (The Statistician). 1999;48(2):215–225. doi:10.1111/1467-9884.00183.
  • Fisman DN, Hauck TS, Tuite AR, et al. An IDEA for short term outbreak projection: nearcasting using the basic reproduction number. PloS One. 2013;8(12):22, doi:10.1371/journal.pone.0083622.
  • Tuite AR, Fisman DN. The IDEA model: a single equation approach to the Ebola forecasting challenge. Epidemics. 2018;22:71–77. doi:10.1016/j.epidem.2016.09.001.
  • Berger RD. Comparison of the Gompertz and logistic equations to describe plant disease progress. Phytopathology. 1981;71(7):716–719.
  • Chowell G, Viboud C, Hyman JM, et al. The western Africa ebola virus disease epidemic exhibits both global exponential and local polynomial growth rates. PLoS Curr. 2015;7. doi:10.1371/currents.outbreaks.8b55f4bad99ac5c5db3663e916803261.
  • Pell B, Baez J, Phan T, et al. Patch models of EVD transmission dynamics. In: Mathematical and statistical modeling for emerging and re-emerging infectious diseases. [Online]. Available: https://doi.org/10.1007/978-3-319-40413-4_10.
  • Permanasari AE, Rambli DRA, Dominic PDD. Performance of univariate forecasting on seasonal diseases: the case of Tuberculosis. In: Arabnia H, Tran QN, editors. Software tools and algorithms for biological systems. Advances in Experimental Medicine and Biology, Vol. 696. New York: Springer; 2011. https://doi.org/10.1007/978-1-4419-7046-6_17
  • Abdullah S, Sapii N, Dir S, et al. Application of univariate forecasting models of tuberculosis cases in Kelantan. Presented at ICSSBE IEEE. 2012, September. doi:10.1109/ICSSBE.2012.6396582.
  • Zhou H, Lawson AB. EWMA smoothing and Bayesian spatial modeling for health surveillance. Stat Med. 2008;27(28):5907–5928. doi:10.1002/sim.3409.
  • Benvenuto D, Giovanetti M, Vassallo L, et al. Application of the ARIMA model on the COVID-2019 epidemic dataset. Data Brief. 2020;29:105340. doi:10.1016/j.dib.2020.105340.
  • Lai D. Monitoring the SARS epidemic in China: a time series analysis. J Data Sci; 3(3):279–293. Available at http://www.jds-online.com/files/JDS-229.pdf [Online].
  • Liu Q, Liu X, Jiang B, et al. Forecasting incidence of hemorrhagic fever with renal syndrome in China using ARIMA model. BMC Infect Dis. Aug, 2011;11(1):218. doi:10.1186/1471-2334-11-218.
  • Liboschik T, Kerschke P, Fokianos K, et al. Modelling interventions in INGARCH processes. Int J Comput Math. 2016;93(4):640–657. doi:10.1080/00207160.2014.949250.
  • Jamaludin AR, Yusof F, Suhartono S. Modelling asthma cases by count analysis approach: Poisson INGARCH and negative binomial INGARCH. MATEMATIKA: Malaysian J Ind Appl Math. 2020;36(1):15–30. doi:10.11113/matematika.v36.n1.1158.
  • Tian FP, Ma LL. Researches of hypertension disease situation in Haixizhou region based on GARCH model. J Northwest Univ Nationalities (Nat Sci). 2010;3. Available: http://en.cnki.com.cn/Article_en/CJFDTotal-XMXB201003001.htm [Online].
  • Zhang L, Zheng Y, Wang K, et al. An optimized Nash nonlinear grey Bernoulli model based on particle swarm optimization and its application in prediction for the incidence of Hepatitis B in Xinjiang, China. Comput Biol Med. 2014;49:67–73. doi:10.1016/j.compbiomed.2014.02.008.
  • Jin RF, Qiu H, Zhou X, et al. Forecasting incidence of intestinal infectious diseases in mainland China with ARIMA model and GM (1, 1) model. Fudan Univ J Med Sci. 2008;5(010). Available: http://en.cnki.com.cn/Article_en/CJFDTotal-SHYK200805010.htm [Online].
  • Gao ST, Liu JP, Zhang RL, et al. Establishment and estimation of a GM (1, 1) grey model for forecasting of malaria epidemic situation in Shenzhen Longgang areas. J Pathogen Biol. 2007;2:357–359. Available: http://en.cnki.com.cn/Article_en/CJFDTotal-ZISC200705014.htm [Online].
  • Shen X, Ou L, Chen X, Zhang X, Tan X. The application of the grey disaster model to forecast epidemic peaks of typhoid and paratyphoid fever in China. PloS one, 2013;8(4):1–6, p.e60601. doi:10.1371/journal.pone.0060601
  • Madadizadeh F, Montazeri M, Bahrampour A. Predicting of liver disease using hidden Markov model. Razi J Med Sci. 2016;23(146):66–74. Available: http://rjms.iums.ac.ir/article-1-3799-en.html [Online].
  • Dong W, Pentland A, Heller KA. Graph-coupled hmms for modeling the spread of infection. arXiv preprint [Online] arXiv:1210.4864. 2012. Available: UAI-P-2012-PG-227-236.
  • Lee S, Ko J, Tan X, et al. Markov chain modelling analysis of HIV/AIDS progression: a race-based forecast in the United States. Indian J Pharm Sci. 2014;76(2):107. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4023279/ [Online].
  • Funk S, Camacho A, Kucharski AJ, et al. Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model. Epidemics. 2018;22:56–61. doi:10.1016/j.epidem.2016.11.003.
  • Lekone PE, Finkenstädt BF. Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study. Biometrics. 2006;62(4):1170–1177. doi:10.1111/j.1541-0420.2006.00609.x.
  • Venkatramanan S, Lewis B, Chen J, et al. Using data-driven agent- based models for forecasting emerging infectious diseases. Epidemics. 2018;22:43–49. doi:10.1016/j.epidem.2017.02.010.
  • Venna SR, Tavanaei A, Gottumukkala RN, et al. A novel data- driven model for real-time influenza forecasting. IEEE Access. 2018;7:7691–7701. doi:10.1109/ACCESS.2018.2888585.
  • Mussumeci E. A machine learning approach to dengue forecasting: comparing LSTM, Random Forest and lasso. FGV Digital Respository. 2018. Available: http://hdl.handle.net/10438/24093 [Online].
  • Dezhi Y. Application of general regression neural network in hepatitis B incident cases time series forecasting. Comput Appl Softw. 2013;4:63. Available: http://en.cnki.com.cn/Article_en/CJFDTotal-JYRJ201304063.htm [Online].
  • Adhikari B, Xu X, Ramakrishnan N, et al. Epideep: Exploiting embeddings for epidemic forecasting. Presented at Proceedings of the 25th ACM SIGKDD International Conference. 2019, July. [Online]. doi:10.1145/3292500.3330917.
  • Rachmadi MF, Valdes-Hernandez MDC, Makin S, et al. Predicting the evolution of white matter hyperintensities in brain MRI using generative adversarial networks and irregularity map. Presented at International Conference on Medical Image Computing and Computer-Assisted Intervention. 2019, October. [Online]. doi:10.1007/978-3-030-32248-9_17.
  • Nsoesie EO, Beckman R, Marathe M, et al. Prediction of an epidemic curve: a supervised classification approach. Stat Commun Infect Dis. 2011;3(1). doi:10.2202/1948-4690.1038.
  • Moore PJ, Lyons TJ, Gallacher J. Random forest prediction of Alzheimer’s disease using pairwise selection from time series data. PloS One. 2019;14(2). doi:10.1371/journal.pone.0211558.
  • Fu X, Liew C, Soh H, et al. Time-series infectious disease data analysis using SVM and genetic algorithm. Presented at IEEE Congress on Evolutionary Computation. 2007, September. [Online]. doi:10.1109/CEC.2007.4424617.
  • Firestone SM, Ward MP, Christley RM, et al. The importance of location in contact networks: describing early epidemic spread using spatial social network analysis. Prev Vet Med. 2011;102(3):185–195. doi:10.1016/j.prevetmed.2011.07.006.
  • Li F, Wu J. LocalCom: a community-based epidemic forwarding scheme in disruption-tolerant networks. Presented at 6th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks. 2009, June. [online]. doi:10.1109/SAHCN.2009.5168942.
  • Eğrioğlu E, Aladağ ÇH, Günay S. A new model selection strategy in artificial neural networks. Appl Math Comput. 2008;195(2):591–597. Available: http://pascal-francis.inist.fr/vibad/index.php?action = getRecordDetail&idt=20005768 [Online].
  • Yang W, Karspeck A, Shaman J. Comparison of filtering methods for the modeling and retrospective forecasting of influenza epidemics. PLoS Comput Biol. 2014;10(4). doi:10.1371/journal.pcbi.1003583.
  • Liu W, Bao C, Zhou Y, et al. Forecasting incidence of hand, foot and mouth disease using BP neural networks in Jiangsu province, China. BMC Infect Dis. 2019;19(1):1–9. doi:10.1371/journal.pcbi.1003583.
  • Xu Q, Gel YR, Ramirez LLR, et al. Forecasting influenza in Hong Kong with Google search queries and statistical model fusion. PloS One. 2017;12(5). doi:10.1371/journal.pone.0176690.
  • Wang YW, Shen ZZ, Jiang Y. Comparison of ARIMA and GM (1, 1) models for prediction of hepatitis B in China. PloS One. 2018;13(9). doi:10.1371/journal.pone.0204221.
  • Zhang X, Zhang T, Young AA, et al. Applications and comparisons of four time series models in epidemiological surveillance data. PLoS One. 2014;9(2). doi:10.1371/journal.pone.0088075.t001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.