64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Model-guided concurrent data assimilation for calibrating cardiac ion-channel kinetics

, ORCID Icon, &

References

  • Asfaw, T. N., Tyan, L., Glukhov, A. V., & Bondarenko, V. E. (2020). A compartmentalized mathematical model of mouse atrial myocytes. American Journal of Physiology. Heart and Circulatory Physiology, 318(3), H485–H507. https://doi.org/10.1152/ajpheart.00460.2019
  • Bondarenko, V. E. (2014). A compartmentalized mathematical model of the β1-adrenergic signaling system in mouse ventricular myocytes. PLoS One, 9(2), e89113. https://doi.org/10.1371/journal.pone.0089113
  • Bondarenko, V. E., Szigeti, G. P., Bett, G. C., Kim, S.-J., & Rasmusson, R. L. (2004). Computer model of action potential of mouse ventricular myocytes. American Journal of Physiology. Heart and Circulatory Physiology, 287(3), H1378–H1403. https://doi.org/10.1152/ajpheart.00185.2003
  • Brouillette, J., Clark, R. B., Giles, W. R., & Fiset, C. (2004). Functional properties of k+ currents in adult mouse ventricular myocytes. Journal of Physiology, 559(Pt 3), 777–798. https://doi.org/10.1113/jphysiol.2004.063446
  • Costantini, D. L., Arruda, E. P., Agarwal, P., Kim, K.-H., Zhu, Y., Zhu, W., Lebel, M., Cheng, C. W., Park, C. Y., Pierce, S. A., Guerchicoff, A., Pollevick, G. D., Chan, T. Y., Kabir, M. G., Cheng, S. H., Husain, M., Antzelevitch, C., Srivastava, D., Gross, G. J., … Bruneau, B. G. (2005). The homeodomain transcription factor irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell, 123(2), 347–358. https://doi.org/10.1016/j.cell.2005.08.004
  • Coveney, S., & Clayton, R. H. (2020). Sensitivity and uncertainty analysis of two human atrial cardiac cell models using gaussian process emulators. Frontiers in Physiology, 11, 364. https://doi.org/10.3389/fphys.2020.00364
  • Du, D., Yang, H., Ednie, A. R., & Bennett, E. S. (2016). Statistical metamodeling and sequential design of computer experiments to model glyco-altered gating of sodium channels in cardiac myocytes. IEEE Journal of Biomedical and Health Informatics, 20(5), 1439–1452. https://doi.org/10.1109/JBHI.2015.2458791
  • Du, D., Yang, H., Ednie, A. R., & Bennett, E. S. (2018). In-silico modeling of the functional role of reduced sialylation in sodium and potassium channel gating of mouse ventricular myocytes. IEEE Journal of Biomedical and Health Informatics, 22(2), 631–639. https://doi.org/10.1109/JBHI.2017.2664579
  • Du, D., Yang, H., Norring, S. A., & Bennett, E. S. (2014). In-silico modeling of glycosylation modulation dynamics in herg ion channels and cardiac electrical signals. IEEE Journal of Biomedical and Health Informatics, 18(1), 205–214. https://doi.org/10.1109/JBHI.2013.2260864
  • Ednie, A. R., & Bennett, E. S. (2012). Modulation of voltage-gated ion channels by sialylation. Comprehensive Physiology, 2(2), 1269–1301.
  • Ednie, A. R., & Bennett, E. S. (2015). Reduced sialylation impacts ventricular repolarization by modulating specific k+ channel isoforms distinctly. Journal of Biological Chemistry, 290(5), 2769–2783. https://doi.org/10.1074/jbc.M114.605139
  • Ednie, A. R., Deng, W., Yip, K.-P., & Bennett, E. S. (2019). Reduced myocyte complex n-glycosylation causes dilated cardiomyopathy. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 33(1), 1248–1261. https://doi.org/10.1096/fj.201801057R
  • Ednie, A. R., Harper, J. M., & Bennett, E. S. (2015). Sialic acids attached to n-and o-glycans within the nav1. 4 d1s5–s6 linker contribute to channel gating. Biochimica et Biophysica Acta, 1850(2), 307–317. https://doi.org/10.1016/j.bbagen.2014.10.027
  • Ednie, A. R., Horton, K.-K., Wu, J., & Bennett, E. S. (2013). Expression of the sialyltransferase, st3gal4, impacts cardiac voltage-gated sodium channel activity, refractory period and ventricular conduction. Journal of Molecular and Cellular Cardiology, 59, 117–127. https://doi.org/10.1016/j.yjmcc.2013.02.013
  • Ednie, A. R., Parrish, A. R., Sonner, M. J., & Bennett, E. S. (2019). Reduced hybrid/complex n-glycosylation disrupts cardiac electrical signaling and calcium handling in a model of dilated cardiomyopathy. Journal of Molecular and Cellular Cardiology, 132, 13–23. https://doi.org/10.1016/j.yjmcc.2019.05.001
  • Feliciangeli, S., Chatelain, F. C., Bichet, D., & Lesage, F. (2015). The family of k2p channels: Salient structural and functional properties. Journal of Physiology, 593(12), 2587–2603. https://doi.org/10.1113/jphysiol.2014.287268
  • Giudicessi, J. R., & Ackerman, M. J. (2012). Potassium-channel mutations and cardiac arrhythmias—diagnosis and therapy. Nature Reviews. Cardiology, 9(6), 319–332. https://doi.org/10.1038/nrcardio.2012.3
  • Johnstone, R. H., Chang, E. T., Bardenet, R., De Boer, T. P., Gavaghan, D. J., Pathmanathan, P., Clayton, R. H., & Mirams, G. R. (2016). Uncertainty and variability in models of the cardiac action potential: Can we build trustworthy models? Journal of Molecular and Cellular Cardiology, 96, 49–62. https://doi.org/10.1016/j.yjmcc.2015.11.018
  • Kim, H., Yang, H., Ednie, A. R., & Bennett, E. S. (2022). Simulation modeling of reduced glycosylation effects on potassium channels of mouse cardiomyocytes. Frontiers in Physiology, 13, 816651. https://doi.org/10.3389/fphys.2022.816651
  • Li, G., & Wang, X. (2019). Prediction accuracy measures for a nonlinear model and for right-censored time-to-event data. Journal of the American Statistical Association, 114(528), 1815–1825. https://doi.org/10.1080/01621459.2018.1515079
  • Liu, J., Kim, K.-H., London, B., Morales, M. J., & Backx, P. H. (2011). Dissection of the voltage-activated potassium outward currents in adult mouse ventricular myocytes: I(to,f), i(to,s), i(k,slow1), i(k,slow2), and i(ss). Basic Research in Cardiology, 106(2), 189–204. https://doi.org/10.1007/s00395-010-0134-z
  • Mahajan, A., Shiferaw, Y., Sato, D., Baher, A., Olcese, R., Xie, L.-H., Yang, M.-J., Chen, P.-S., Restrepo, J. G., Karma, A., Garfinkel, A., Qu, Z., & Weiss, J. N. (2008). A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophysical Journal, 94(2), 392–410. https://doi.org/10.1529/biophysj.106.98160
  • Marques-da Silva, D., Francisco, R., Webster, D., dos Reis Ferreira, V., Jaeken, J., & Pulinilkunnil, T. (2017). Cardiac complications of congenital disorders of glycosylation (cdg): A systematic review of the literature. Journal of Inherited Metabolic Disease, 40(5), 657–672. https://doi.org/10.1007/s10545-017-0066-y
  • Milani-Nejad, N., & Janssen, P. M. (2014). Small and large animal models in cardiac contraction research: Advantages and disadvantages. Pharmacology & Therapeutics, 141(3), 235–249. https://doi.org/10.1016/j.pharmthera.2013.10.007
  • Nerbonne, J. M. (2004). Studying cardiac arrhythmias in the mouse – A reasonable model for probing mechanisms? Trends in Cardiovascular Medicine, 14(3), 83–93. https://doi.org/10.1016/j.tcm.2003.12.006
  • Ohtsubo, K., & Marth, J. D. (2006). Glycosylation in cellular mechanisms of health and disease. Cell, 126(5), 855–867. https://doi.org/10.1016/j.cell.2006.08.019
  • Ravens, U., & Cerbai, E. (2008). Role of potassium currents in cardiac arrhythmias. Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology:Jjournal of the Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiology of the European Society of Cardiology, 10(10), 1133–1137. https://doi.org/10.1093/europace/eun193
  • Rodriguez, B., Burrage, K., Gavaghan, D., Grau, V., Kohl, P., & Noble, D. (2010). The systems biology approach to drug development: Application to toxicity assessment of cardiac drugs. Clinical Pharmacology and Therapeutics, 88(1), 130–134. https://doi.org/10.1038/clpt.2010.95
  • Schwetz, T. A., Norring, S. A., Ednie, A. R., & Bennett, E. S. (2011). Sialic acids attached to o-glycans modulate voltage-gated potassium channel gating. Journal of Biological Chemistry, 286(6), 4123–4132. https://doi.org/10.1074/jbc.M110.171322
  • Splawski, I., Timothy, K. W., Tateyama, M., Clancy, C. E., Malhotra, A., Beggs, A. H., Cappuccio, F. P., Sagnella, G. A., Kass, R. S., & Keating, M. T. (2002). Variant of scn5a sodium channel implicated in risk of cardiac arrhythmia. Science (New York, N.Y.), 297(5585), 1333–1336. https://doi.org/10.1126/science.1073569
  • Ten Tusscher, K. H., Noble, D., Noble, P.-J., & Panfilov, A. V. (2004). A model for human ventricular tissue. American Journal of Physiology. Heart and Circulatory Physiology, 286(4), H1573–H1589. https://doi.org/10.1152/ajpheart.00794.2003
  • Teng, A. C. T., Gu, L., Di Paola, M., Lakin, R., Williams, Z. J., Au, A., Chen, W., Callaghan, N. I., Zadeh, F. H., Zhou, Y.-Q., Fatah, M., Chatterjee, D., Jourdan, L. J., Liu, J., Simmons, C. A., Kislinger, T., Yip, C. M., Backx, P. H., Gourdie, R. G., Hamilton, R. M., & Gramolini, A. O. (2022). Tmem65 is critical for the structure and function of the intercalated discs in mouse hearts. Nature Communications, 13(1), 6166. https://doi.org/10.1038/s41467-022-33303-y
  • Tristani-Firouzi, M., Chen, J., Mitcheson, J. S., & Sanguinetti, M. C. (2001). Molecular biology of k+ channels and their role in cardiac arrhythmias. American Journal of Medicine, 110(1), 50–59. https://doi.org/10.1016/s0002-9343(00)00623-9
  • Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine Learning Research, 9(86), 2579–2605.
  • Weintraub, R. G., Semsarian, C., & Macdonald, P. (2017). Dilated cardiomyopathy. Lancet (London, England), 390(10092), 400–414. https://doi.org/10.1016/S0140-6736(16)31713-5
  • Whittaker, D. G., Clerx, M., Lei, C. L., Christini, D. J., & Mirams, G. R. (2020). Calibration of ionic and cellular cardiac electrophysiology models. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 12(4), e1482.
  • Winslow, R. L., Cortassa, S., O'Rourke, B., Hashambhoy, Y. L., Rice, J. J., & Greenstein, J. L. (2011). Integrative modeling of the cardiac ventricular myocyte. Wiley Interdisciplinary Reviews. Systems Biology and Medicine, 3(4), 392–413. https://doi.org/10.1002/wsbm.122
  • Xu, H., Guo, W., & Nerbonne, J. M. (1999). Four kinetically distinct depolarization-activated k+ currents in adult mouse ventricular myocytes. Journal of General Physiology, 113(5), 661–678. https://doi.org/10.1085/jgp.113.5.661

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.