1,754
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Subjective Evaluation of a Passive Lower-Limb Industrial Exoskeleton Used During simulated Assembly

, , , &
Pages 175-184 | Received 25 Jun 2018, Accepted 14 Dec 2018, Published online: 29 Jan 2019

References

  • Alabdulkarim, S., & Nussbaum, M. A. (2019). Influences of different exoskeleton designs and tool mass on physical demands and performance in a simulated overhead drilling task. Applied Ergonomics, 74, 55–66. doi:10.1016/j.apergo.2018.08.004
  • Ambrosini, E., Ferrante, S., Schauer, T., Klauer, C., Gaffuri, M., Ferrigno, G., & Pedrocchi, A. (2014). A myocontrolled neuroprosthesis integrated with a passive exoskeleton to support upper limb activities. Journal of Electromyography and Kinesiology, 24(2), 307–317. doi:10.1016/j.jelekin.2014.01.006
  • Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS scores mean: Adding an adjective rating scale. Journal of Usability Studies, 4(3), 114–123.
  • Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377–381.
  • Borg, G. A. (1998). Borg's perceived exertion and pain scales. USA: Human Kinetics.
  • Bortoletto, R., Mello, A. N., & Piovesan, D. (2017). A springs actuated finger exoskeleton: From mechanical design to spring variables evaluation. IEEE International Conference on Rehabilitation Robotics Proceedings (pp. 1319–1325), London, UK. doi:10.1109/ICORR.2017.8009431
  • Bosch, T., van Eck, J., Knitel, K., & de Looze, M. (2016). The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work. Applied Ergonomics, 54, 212–217. doi:10.1016/j.apergo.2015.12.003
  • Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. doi:10.1037/0033-2909.112.1.155
  • da Costa, B. R., & Vieira, E. R. (2010). Risk factors for work-related musculoskeletal disorders: A systematic review of recent longitudinal studies. American Journal of Industrial Medicine, 53(3), 285–323. doi:10.1002/ajim.20750
  • de Looze, M. P., Bosch, T., Krause, F., Stadler, K. S., & O’Sullivan, L. W. (2015). Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics, 59(5), 671–681. doi:10.1080/00140139.2015.1081988
  • Gordon, K. E., Sawicki, G. S., & Ferris, D. P. (2006). Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis. Journal of Biomechanics, 39(10), 1832–1841. doi:10.1016/j.jbiomech.2005.05.018
  • Gregorczyk, K. N., Hasselquist, L., Schiffman, J. M., Bensel, C. K., Obusek, J. P., & Gutekunst, D. J. (2010). Effects of a lower-body exoskeleton device on metabolic cost and gait biomechanics during load carriage. Ergonomics, 53(10), 1263–1275. doi:10.1080/00140139.2010.512982
  • Huysamen, K., de Looze, M., Bosch, T., Ortiz, J., Toxiri, S., & O'Sullivan, L. W. (2018). Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks. Applied Ergonomics, 68, 125–131. doi:10.1016/j.apergo.2017.11.004
  • Kausto, J., Miranda, H., Pehkonen, I., Heliovaara, M., Viikari-Juntura, E., & Solovieva, S. (2011). The distribution and co-occurrence of physical and psychosocial risk factors for musculoskeletal disorders in a general working population. International Archives of Occupational and Environmental Health, 84(7), 773–788. doi:10.1007/s00420-010-0597-0
  • Kim, S., Nussbaum, M. A., Mokhlespour Esfahani, M. I., Alemi, M. M., Alabdulkarim, S., & Rashedi, E. (2018). Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part I - "Expected" effects on discomfort, shoulder muscle activity, and work task performance. Applied Ergonomics, 70, 315–322. doi:10.1016/j.apergo.2018.02.025
  • Kim, S., Nussbaum, M. A., Mokhlespour Esfahani, M. I., Alemi, M. M., Jia, B., & Rashedi, E. (2018). Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part II - "Unexpected" effects on shoulder motion, balance, and spine loading. Applied Ergonomics, 70, 323–330. doi:10.1016/j.apergo.2018.02.024
  • Kim, S. J., Kim, Y., Lee, H., Ghasemlou, P., & Kim, J. (2018). Development of an MR-compatible hand exoskeleton that is capable of providing interactive robotic rehabilitation during fMRI imaging. Medical & Biological Engineering & Computing, 56(2), 261–272. doi:10.1007/s11517-017-1681-3
  • Luger, T. (2018). Is postural control critically influenced by wearing a passive lower-extremity exoskeleton? Paper presented at the 58th Scientific Annual Conference of the German Society of Occupational Medicine and Environmental Medicine (DGAUM), München, Germany.
  • Luger, T., Cobb, T. J., Kreidler, T. J., Seibt, R., Hensel-Unger, R., Rieger, M. A., & Steinhilber, B. (2018a). Effect of the passive exoskeleton Chairless Chair on muscular activity and postural control – influence of different seat heights. Paper presented at the 64th Spring Congress of the Society of Ergonomics (GfA), Frankfurt am Main, Germany.
  • Luger, T., Cobb, T. J., Kreidler, T. J., Seibt, R., Hensel-Unger, R., Rieger, M. A., & Steinhilber, B. (2018b). Influence of different seat heights on muscle activity and postural control while wearing the passive exoskeleton Chairless Chair. Paper presented at the 58th Scientific Annual Conference of the German Society of Occupational Medicine and Environmental Medicine (DGAUM), München, Germany.
  • Luger, T., Seibt, R., Cobb, T. J., Rieger, M. A., & Steinhilber, B. (Under Review). Physical load, upper body posture, postural control and discomfort during simulated assembly work while wearing a passive lower limb exoskeleton – Influence of sitting height and working distance. Applied Ergonomics
  • Luger, T., Seibt, R., Rieger, M. A., & Steinhilber, B. (2018a). Evaluation of a passive lower-extremity exoskeleton for reducing prolonged standing at work. Paper presented at the 22nd Symposium of Occupational Medicine and Ergonomics for Young Scientists, Tübingen, Germany.
  • Luger, T., Seibt, R., Rieger, M. A., & Steinhilber, B. (2018b). Influence of a passive lower-extremity exoskeleton on postural control. Paper presented at the 20th Congress of the International Ergonomics Association (IEA), Florence, Italy.
  • Mayer, J., Kraus, T., & Ochsmann, E. (2012). Longitudinal evidence for the association between work-related physical exposures and neck and/or shoulder complaints: a systematic review. International Archives of Occupational and Environmental Health, 85(6), 587–603. doi:10.1007/s00420-011-0701-0
  • Maynard, H. B., Stegmerten, G. J., & Schwab, J. L. (1948). Methods-time measurement. New York, NY: McGraw-Hill.
  • Pons, J. L. (2010). Rehabilitation exoskeletal robotics. IEEE Engineering in Medicine and Biology Magazine, 29(3), 57–63. doi:10.1109/MEMB.2010.936548
  • Schiffman, J. M., Gregorczyk, K. N., Bensel, C. K., Hasselquist, L., & Obusek, J. P. (2008). The effects of a lower body exoskeleton load carriage assistive device on limits of stability and postural sway. Ergonomics, 51(10), 1515–1529. doi:10.1080/00140130802248084
  • Sergl, H. G., Klages, U., & Zentner, A. (1998). Pain and discomfort during orthodontic treatment: Causative factors and effects on compliance. American Journal of Orthodontics and Dentofacial Orthopedics, 114(6), 684–691. doi:10.1016/S0889-5406(98)70201-X
  • Steinhilber, B., Seibt, R., Rieger, M. A., & Luger, T. (preparation). Safety aspects of an industrial exoskeleton: Risk of falling with and without external perturbation while sitting on a passive lower-extremity exoskeleton.
  • Takahashi, K. Z., Lewek, M. D., & Sawicki, G. S. (2015). A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study. Journal of Neuroengineering and Rehabilitation, 12(1), 23. doi:10.1186/s12984-015-0015-7
  • Theurel, J., Desbrosses, K., Roux, T., & Savescu, A. (2018). Physiological consequences of using an upper limb exoskeleton during manual handling tasks. Applied Ergonomics, 67, 211–217. doi:10.1016/j.apergo.2017.10.008
  • Weston, E. B., Alizadeh, M., Knapik, G. G., Wang, X., & Marras, W. S. (2018). Biomechanical evaluation of exoskeleton use on loading of the lumbar spine. Applied Ergonomics, 68, 101–108. doi:10.1016/j.apergo.2017.11.006
  • Williams, E. J. (1949). Experimental designs balanced for the estimation of residual effects of treatments. Australian Journal of Chemistry, 2(3), 149–168. doi:10.1071/PH490149

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.