2,176
Views
7
CrossRef citations to date
0
Altmetric
Data Science, Quality & Reliability

Multimodal data fusion for systems improvement: A review

, &
Pages 1098-1116 | Received 27 Dec 2020, Accepted 02 Jul 2021, Published online: 03 Dec 2021

References

  • Abavisani, M. and Patel, V.M. (2018) Multimodal sparse and low-rank subspace clustering. Information Fusion, 39, 168–177.
  • Acar, E., Bro, R. and Smilde, A.K. (2015) Data fusion in metabolomics using coupled matrix and tensor factorizations. Proceedings of the IEEE, 103(9), 1602–1620.
  • Acar, E. Papalexakis, E.E., Gürdeniz, G., Rasmussen, M.A., Lawaetz, A.J., Nilsson, M. and Bro, R. (2014) Structure-revealing data fusion. BMC Bioinformatics, 15(1), 1–17.
  • Acar, E., Rasmussen, M.A. Savorani, F., Naes, T. and Bro, R. (2013) Understanding data fusion within the framework of coupled matrix and tensor factorizations. Chemometrics and Intelligent Laboratory Systems, 129, 53–63.
  • Adhikari, S. Lecci, F., Becker, J.T., Junker, B.W., Kuller, L.H., Lopez, O.L. and Tibshirani, R.J. (2019) High-dimensional longitudinal classification with the multinomial fused lasso. Statistics in Medicine, 38(12), 2184–2205.
  • Albers, D.J., Levine, M.E., Stuart, A., Mamykina, L., Gluckman, B. and Hripcsak, G. (2018) Mechanistic machine learning: How data assimilation leverages physiologic knowledge using Bayesian inference to forecast the future, infer the present, and phenotype. Journal of the American Medical Informatics Association, 25(10), 1392–1401.
  • Argelaguet, R., Velten, B., Arnol, D., Dietrich, S., Zenz, T., Marioni, J.C., Buettner, F., Huber, W. and Stegle, O. (2018) Multi-Omics Factor Analysis–A framework for unsupervised integration of multi-omics data sets. Molecular Systems Biology, 14(6), e8124.
  • Atrey, P.K., Hossain, M.A., El Saddik, A. and Kankanhalli, M.S. (2010) Multimodal fusion for multimedia analysis: A survey. Multimedia Systems, 16(6), 345–379.
  • Brentan, B.M., Luvizotto Jr, E., Herrera, M., Izquierdo, J. and Pérez-García, R. (2017) Hybrid regression model for near real-time urban water demand forecasting. Journal of Computational and Applied Mathematics, 309, 532–541.
  • Bro, R. (1996) Multiway calibration. multilinear PLS. Journal of Chemometrics, 10(1), 47–61.
  • Bro, R. et al. (1997) Parafac. tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 38(2), 149–172.
  • Calhoun, V.D. and Sui, J. (2016) Multimodal fusion of brain imaging data: A key to finding the missing link(s) in complex mental illness. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(3), 230–244.
  • Candès, E.J., Li, S., Ma, Y. and Wright, J. (2011) Robust principal component analysis? Journal of the ACM (JACM), 58(3), 1–37, 2011.
  • Castellano, G., Kessous, L. and Caridakis, G. (2008) Emotion recognition through multiple modalities: Face, body gesture, speech, in Affect and Emotion in Human-Computer Interaction, Springer, Milwaukee, WI, pp. 92–103.
  • Chehade, A., Song, C., Liu, K., Saxena, A. and Zhang, X. (2018) A data-level fusion approach for degradation modeling and prognostic analysis under multiple failure modes. Journal of Quality Technology, 50(2), 150–165.
  • Chen, D. and Irwin, D. (2017) Black-box solar performance modeling: Comparing physical, machine learning, and hybrid approaches. ACM SIGMETRICS Performance Evaluation Review, 45(2), 79–84.
  • Chlaily, S., Amblard, P.-O., Michel, O. and Jutten, C. (2016) Impact of noise correlation on multimodality, in 2016 24th European Signal Processing Conference (EUSIPCO), IEEE Press, Piscataway, NJ, pp. 195–199.
  • Clifton, S.M., Kang, C., Li, J.J., Long, Q., Shah, N. and Abrams, D.M. (2017) Hybrid statistical and mechanistic mathematical model guides mobile health intervention for chronic pain. Journal of Computational Biology, 24(7), 675–688.
  • DenseNet121. (2018) Densenet121. https://github.com/keras-team/keras-applications/blob/master/keras_applications/densenet.py (accessed 27 December 2020).
  • Dong, D., Li, Z., Rahman, S.M.M. and Vega, R. (2016) A hybrid model approach for forecasting future residential electricity consumption. Energy and Buildings, 117, 341–351.
  • Elhamifar, E. (2016) High-rank matrix completion and clustering under self-expressive models, in Advances in Neural Information Processing Systems, Barcelona, Spain, pp. 73–81.
  • Fang, X., Gebraeel, N.Z. and Paynabar, N. (2017) Scalable prognostic models for large-scale condition monitoring applications. IISE Transactions, 49(7), 698–710.
  • Fang, X., Paynabar, K. and Gebraeel, N. (2019) Image-based prognostics using penalized tensor regression. Technometrics, 61(3), 369–384.
  • Fang, X., Zhou, R. and Gebraeel, N. (2015) An adaptive functional regression-based prognostic model for applications with missing data. Reliability Engineering & System Safety, 133, 266–274.
  • Fernandez-Beltran, R., Haut, J.M., Paoletti, M.E., Plaza, J., Plaza, A. and Pla, F. (2018a) Multimodal probabilistic latent semantic analysis for sentinel-1 and sentinel-2 image fusion. IEEE Geoscience and Remote Sensing Letters, 15(9), 1347–1351.
  • Fernandez-Beltran, R., Haut, J.M., Paoletti, M.E., Plaza, J., Plaza, A. and Pla, F. (2018b) Remote sensing image fusion using hierarchical multimodal probabilistic latent semantic analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(12), 4982–4993.
  • Gahrooei, M.R., Paynabar, K., Pacella, M. and Colosimo, M.B. (2019) An adaptive fused sampling approach of high-accuracy data in the presence of low-accuracy data. IISE Transactions, 51(11), 1251–1264.
  • Gahrooei, M.R., Paynabar, K., Pacella, M. and Shi, J. (2019) Process modeling and prediction with large number of high-dimensional variables using functional regression. IEEE Transactions on Automation Science and Engineering, 17(2), 684–696.
  • Gahrooei, M.R., Yan, H., Paynabar, K. and Shi, J. (2020) Multiple tensor-on-tensor regression: An approach for modeling processes with heterogeneous sources of data. Technometrics, 63(2), 147–159.
  • Galán, C.O., Lasheras, F.S., de Cos Juez, F.J. and Sánchez, A.B. (2017) Missing data imputation of questionnaires by means of genetic algorithms with different fitness functions. Journal of Computational and Applied Mathematics, 311, 704–717.
  • Gao, F., Wu, T., Li, J., Zheng, B., Ruan, L., Shang, D. and Patel, B. (2018) SD:CNN: A shallow-deep CNN for improved breast cancer diagnosis. Computerized Medical Imaging and Graphics, 70, 53–62.
  • Gao, H. (2020) Coordination and Privacy Preservation in Multi-Agent Systems (Doctoral dissertation, Clemson University).
  • Gao, J., Li, P., Chen, Z. and Zhang, J. (2020) A survey on deep learning for multimodal data fusion. Neural Computation, 32(5), 829–864.
  • Gaskin, C.J. and Happell, B. (2014) On exploratory factor analysis: A review of recent evidence, an assessment of current practice, and recommendations for future use. International Journal of Nursing Studies, 51(3), 511–521.
  • Gaw, N., Hawkins-Daarud, A., Hu, L.S., Yoon, H., Wang, L., Xu, Y., Jackson, P.R., Singleton, K.W., Baxter, L.C., Eschbacher, J. et al. (2019) Integration of machine learning and mechanistic models accurately predicts variation in cell density of glioblastoma using multiparametric mri. Scientific Reports, 9(1), 1–9.
  • Gaw, N., Schwedt, T.J., Chong, C.D., Wu, T. and Li, J. (2018) A clinical decision support system using multi-modality imaging data for disease diagnosis. IISE Transactions on Healthcare Systems Engineering, 8(1), 36–46.
  • Georghiades, A.S., Belhumeur, P.N. and Kriegman, D.J. (2001) From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 643–660.
  • Gorgannejad, S., Gahrooei, M.R., Paynabar, K. and Neu, R.W. (2019) Quantitative prediction of the aged state of ni-base superalloys using pca and tensor regression. Acta Materialia, 165, 259–269.
  • Guo, H., Wang, S., Tie, Y., Qi, K. and Guan, L. (2018) Joint intermodal and intramodal correlation preservation for semi-paired learning. Pattern Recognition, 81, 36–49.
  • He, C., Liu, Q., Li, H. and Wang, H. (2010) Multimodal medical image fusion based on ihs and pca. Procedia Engineering, 7, 280–285.
  • He, D., Wang, Z., Yang, L. and Dai, W. (2017) Study on missing data imputation and modeling for the leaching process. Chemical Engineering Research and Design, 124, 1–19.
  • Ho, J.C., Ghosh, J. and Sun, J. (2014) Marble: high-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization, in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 115–124.
  • Hotelling, H. (1936) Relations between two sets of variates. Biometrika, 28(3/4), 321–377.
  • Ilarshman, RA. (1970) Foundations of the parafac procedure: Models and methods for an “explanatory” multi-mode factor analysis. UCLA Working Papers in Phonetics, 16, 1–84.
  • InceptionV3. Inceptionv3. https://github.com/keras-team/keras-applications/blob/master/keras_applications/inception_v3.py (accessed 27 December 2020).
  • Joze, H.R.V., Shaban, A., Iuzzolino, M.L. and Koishida, K. (2020) MMTM: Multimodal transfer module for CNN fusion, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE/CVF, Seattle, WA, pp. 13289–13299.
  • Kahou, S.E., Bouthillier, X., Lamblin, P., Gulcehre, C., Michalski, V., Konda, K., Jean, S., Froumenty, P., Dauphin, Y., Boulanger-Lewandowski, N., et al. (2016) Emonets: Multimodal deep learning approaches for emotion recognition in video. Journal on Multimodal User Interfaces, 10(2), 99–111.
  • Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R. and Fei-Fei, L. (2014) Large-scale video classification with convolutional neural networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE/CVF, Columbus, OH, pp. 1725–1732.
  • Kefayati, M., Talebi, M.S., Khalaj, B.H. and Rabiee, H.R. (2007a) Secure consensus averaging in sensor networks using random offsets, in 2007 IEEE International Conference on Telecommunications and Malaysia International Conference on Communications, IEEE, Penang, Malaysia, pp. 556–560.
  • Kefayati, M., Talebi, M.S., Rabiee, H.R. and Khalaj, B.H. (2007b) On secure consensus information fusion over sensor networks, in 2007 IEEE/ACS International Conference on Computer Systems and Applications, IEEE/ACS, Amman, Jordan, pp. 108–115.
  • Kettenring, J.R. (1971) Canonical analysis of several sets of variables. Biometrika, 58(3), 433–451.
  • Khaleghi, B., Khamis, A., Karray, F.O. and Razavi, S.N. (2013) Multisensor data fusion: A review of the state-of-the-art. Information Fusion, 14(1), 28–44.
  • Khan, S.A., Virtanen, S., Kallioniemi, O.P., Wennerberg, K., Poso, A. and Kaski, S. (2014) Identification of structural features in chemicals associated with cancer drug response: A systematic data-driven analysis. Bioinformatics, 30(17), i497–i504.
  • Khasha, R., Sepehri, M.M. and Mahdaviani, S.A. (2019) An ensemble learning method for asthma control level detection with leveraging medical knowledge-based classifier and supervised learning. Journal of Medical Systems, 43(6), 1–15.
  • Kibble, M., Khan, S.A., Saarinen, N., Iorio, F., Saez-Rodriguez, J., Mäkelä, S. and Aittokallio, T. (2016) Transcriptional response networks for elucidating mechanisms of action of multitargeted agents. Drug Discovery Today, 21(7), 1063–1075.
  • Klami, A., Virtanen, S. and Kaski. S. (2013) Bayesian canonical correlation analysis. Journal of Machine Learning Research, 14(Apr), 965–1003.
  • Kolda, T.G. (2006) Multilinear operators for higher-order decompositions. Technical report, Sandia National Laboratories.
  • Kumar, M., Garg, D.P. and Zachery, R.A. (2007) A method for judicious fusion of inconsistent multiple sensor data. IEEE Sensors Journal, 7(5), 723–733.
  • Kumar, P. and Diwakar, M. (2021) A novel approach for multimodality medical image fusion over secure environment. Transactions on Emerging Telecommunications Technologies, 32(2), e3985.
  • Lahat, D., Adalý, T. and Jutten, C. (2014) Challenges in multimodal data fusion, in 2014 22nd European Signal Processing Conference (EUSIPCO), IEEE Aerospace and Electronic Systems Society (AESS), Lisbon, Portugal, pp. 101–105.
  • Lahat, D., Adali, T. and Jutten, C. (2015) Multimodal data fusion: an overview of methods, challenges, and prospects. Proceedings of the IEEE, 103(9), 1449–1477.
  • Lahti, L., Schäfer, M., Klein, H.-U., Bicciato, S. and Dugas, M. (2013) Cancer gene prioritization by integrative analysis of MRNA expression and DNA copy number data: A comparative review. Briefings in Bioinformatics, 14(1), 27–35.
  • Lampert, C.H. and Krömer, O. (2010) Weakly-paired maximum covariance analysis for multimodal dimensionality reduction and transfer learning, in European Conference on Computer Vision, Springer, Heraklion, Crete, Greece, pp. 566–579.
  • Li, D., Dimitrova, N., Li, M. and Sethi, I.K. (2003) Multimedia content processing through cross-modal association, in Proceedings of the Eleventh ACM International Conference on Multimedia, ACM, Berkeley, CA, pp. 604–611.
  • Li, J., Choi, J., Perros, L., Sun, J. and Vuduc, R. (2017a) Model-driven sparse CP decomposition for higher-order tensors, in 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), IEEE Press, Piscataway, NJ, pp. 1048–1057.
  • Li, J. and Shi, J. (2007) Knowledge discovery from observational data for process control using causal Bayesian networks. IIE Transactions, 39(6), 681–690.
  • Li, N., Gebraeel, N., Lei, Y., Fang, X., Cai, X. and Yan, T. (2021) Remaining useful life prediction based on a multi-sensor data fusion model. Reliability Engineering & System Safety, 208, 107249.
  • Li, Q. and Li, L. (2019) Integrative factor regression and its inference for multimodal data analysis. arXiv preprint arXiv:1911.04056.
  • Li, R., Zhang, W., Suk, H.-Il, Wang, L., Li, J., Shen, D. and Ji, S. (2014) Deep learning based imaging data completion for improved brain disease diagnosis, In International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI, Boston, MA, pp. 305–312.
  • Li, S., Wang, W., Qi, H., Ayhan, B., Kwan, C. and Vance, S. (2015) Low-rank tensor decomposition based anomaly detection for hyperspectral imagery, in 2015 IEEE International Conference on Image Processing (ICIP), IEEE Press, Piscataway, NJ, pp. 4525–4529.
  • Li, W., Cerise, J.E., Yang, Y. and Han, H. (2017) Application of t-sne to human genetic data. Journal of Bioinformatics and Computational Biology, 15(04),1750017.
  • Li, Y., Wu, F.-X. and Ngom, A. (2018) A review on machine learning principles for multi-view biological data integration. Briefings in Bioinformatics, 19(2), 325–340.
  • Liberman, Y., Samuels, R., Alpert, P. and Messer, H. (2014) New algorithm for integration between wireless microwave sensor network and radar for improved rainfall measurement and mapping. Atmospheric Measurement Techniques, 7(10), 3549–3563.
  • Liu, D., Clemente, L., Poirier, C., Ding, X., Chinazzi, M., Davis, J.T., Vespignani, A. and Santillana, M. (2020a) A machine learning methodology for real-time forecasting of the 2019-2020 covid-19 outbreak using internet searches, news alerts, and estimates from mechanistic models. arXiv preprint arXiv:2004.04019.
  • Liu, K., Chehade, A., and Song, C. (2015) Optimize the signal quality of the composite health index via data fusion for degradation modeling and prognostic analysis. IEEE Transactions on Automation Science and Engineering, 14(3), 1504–1514.
  • Liu, J., Li, T., Xie, P., Du, S., Teng, F. and Yang, X. (2020) Urban big data fusion based on deep learning: An overview. Information Fusion, 53, 123–133.
  • Liu, K., Gebraeel, N.Z. and Shi, J. (2013) A data-level fusion model for developing composite health indices for degradation modeling and prognostic analysis. IEEE Transactions on Automation Science and Engineering, 10(3), 652–664.
  • Liu, K. and Huang, S. (2014) Integration of data fusion methodology and degradation modeling process to improve prognostics. IEEE Transactions on Automation Science and Engineering, 13(1), 344–354.
  • Liu, M., Zhang, J., Yap, P.-T. and Shen, D. (2016) Diagnosis of Alzheimer’s disease using view-aligned hypergraph learning with incomplete multi-modality data, in International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI, Athens, Greece, pp. 308–316.
  • Liu, X., Chen, K., Wu, T., Weidman, D., Lure, F. YM, Li, J., Alzheimer’s Disease Neuroimaging Initiative (ADNI), et al. (2020c) A novel transfer learning model for predictive analytics using incomplete multimodality data. medRxiv.
  • Liu, Z. and Guo, Y. (2018) A hybrid approach to integrate machine learning and process mechanics for the prediction of specific cutting energy. CIRP Annals, 67(1), 57–60.
  • Liu, Z., Zhang, W., Quek, T.Q.S. and Lin, S. (2017) Deep fusion of heterogeneous sensor data, in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE Press, Piscataway, NJ, pp. 5965–5969.
  • Lock, E.F. (2018) Tensor-on-tensor regression. Journal of Computational and Graphical Statistics, 27(3), 638–647.
  • Mak, S., Sung, C.-L., Wang, X., Yeh, S.-T., Chang, Y.-H., Joseph, V.R., Yang, V. and Wu, C.F.J. (2018) An efficient surrogate model for emulation and physics extraction of large eddy simulations. Journal of the American Statistical Association, 113(524), 1443–1456.
  • Mascheroni, P., Alfonso, J.C.L., Meyer-Hermann, M. and Hatzikirou, H. (2020) Bayesian combination of mechanistic modeling and machine learning (BAM3): Improving clinical tumor growth predictions. bioRxiv.
  • Meng, Y., Yu, S., Zhang, J., Qin, J., Dong, Z., Lu, G. and Pang, H. (2019) Hybrid modeling based on mechanistic and data-driven approaches for cane sugar crystallization. Journal of Food Engineering, 257, 44–55.
  • Moin, A., Bhateja, V. and Srivastava, A. (2016) Weighted-PCA based multimodal medical image fusion in contourlet domain, in Proceedings of the International Congress on Information and Communication Technology, Springer, IEEE, Udaipur, India pp. 597–605.
  • Neverova, N., Wolf, C., Taylor, G. and Nebout, F. (2015) Moddrop: Adaptive multi-modal gesture recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(8), 1692–1706.
  • Ng, A. (2011) Sparse autoencoder. CS294A Lecture Notes, 72(2011), 1–19.
  • Paynabar, K., Jin, J. and Reed, M.P. (2015) Informative sensor and feature selection via hierarchical nonnegative garrote. Technometrics, 57(4), 514–523.
  • Peng, Y., Qi, J., Huang, X. and Yuan, Y. (2017) CCL: Cross-modal correlation learning with multigrained fusion by hierarchical network. IEEE Transactions on Multimedia, 20(2), 405–420.
  • Pérez-Rúa, J.-M., Vielzeuf, V., Pateux, S., Baccouche, M. and Jurie, F. (2019) MAFS: Multimodal fusion architecture search, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE Press, Piscataway, NJ, pp. 6966–6975.
  • Prakash, O., Park, C.M., Khare, A., Jeon, M. and Gwak, J. (2019) Multiscale fusion of multimodal medical images using lifting scheme based biorthogonal wavelet transform. Optik, 182, 995–1014.
  • Qi, J., Yang, P., Newcombe, L., Peng, X., Yang, Y. and Zhao, Z. (2020) An overview of data fusion techniques for internet of things enabled physical activity recognition and measure. Information Fusion, 55, 269–280.
  • Rajalingam, B. and Priya, R. (2017) Multimodality medical image fusion based on hybrid fusion techniques. International Journal of Engineering and Manufacturing Science, 7(1), 22–29.
  • Ramachandram, D., Lisicki, M., Shields, T.J., Amer, M.R. and Taylor, G.W. (2018) Bayesian optimization on graph-structured search spaces: Optimizing deep multimodal fusion architectures. Neurocomputing, 298, 80–89.
  • Ramachandram, D. and Taylor, G.W. (2017) Deep multimodal learning: A survey on recent advances and trends. IEEE Signal Processing Magazine, 34(6), 96–108.
  • Rankawat, S.A. and Dubey, R. (2017) Robust heart rate estimation from multimodal physiological signals using beat signal quality index based majority voting fusion method. Biomedical Signal Processing and Control, 33, 201–212.
  • Gilan, S.S., Goyal, N. and Dilkina, B. (2016) Active learning in multi-objective evolutionary algorithms for sustainable building design, in Proceedings of the Genetic and Evolutionary Computation Conference 2016, ACM, Denver, CO, pp. 589–596.
  • Sagi, O. and Rokach, L. (2018) Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), e1249.
  • Said, A.B., Mohamed, A., Elfouly, T., Harras, K. and Wang, Z.J. (2017) Multimodal deep learning approach for joint EEG-EMG data compression and classification, in 2017 IEEE Wireless Communications and Networking Conference (WCNC), IEEE Press, Piscataway, NJ, pp.1–6.
  • Samareh, A., Jin, Y., Wang, Z., Chang, X. and Huang, S. (2018) Detect depression from communication: How computer vision, signal processing, and sentiment analysis join forces. IISE Transactions on Healthcare Systems Engineering, 8(3), 196–208.
  • Schmitt, M. and Zhu, X.X. (2016) Data fusion and remote sensing: An ever-growing relationship. IEEE Geoscience and Remote Sensing Magazine, 4(4), 6–23.
  • Seyyedi, H. (2010) Comparing satellite derived rainfall with ground based radar for Northwestern Europe. University of Twente Faculty of Geo-Information and Earth Observation (ITC).
  • Si, B., Schwedt, T.J., Chong, C.D., Wu, T. and Li, J. (2020) A novel hierarchically-structured factor mixture model for cluster discovery from multi-modality data. IISE Transactions, 53(7), 1–13.
  • Siegel, M. and Wu, H. (2004) Confidence fusion, in IEEE International Workshop on Robot Sensing, IEEE Press, Piscataway, NJ, pp. 96–99.
  • Simonyan, K. and Zisserman, A. (2014) Two-stream convolutional networks for action recognition in videos. Advances in Neural Information Processing Systems, 27, 568–576.
  • Şimşekli, U., Ermiş, B., Cemgil, A.T. and Acar, E. (2013) Optimal weight learning for coupled tensor factorization with mixed divergences, in 21st European Signal Processing Conference (EUSIPCO 2013), IEEE Press, Piscataway, NJ, pp. 1–5.
  • Song, C. and Liu, K. (2018) Statistical degradation modeling and prognostics of multiple sensor signals via data fusion: A composite health index approach. IISE Transactions, 50(10), 853–867.
  • Song, C., Liu, K. and Zhang, X. (2019) A generic framework for multisensor degradation modeling based on supervised classification and failure surface. IISE Transactions, 51(11), 1288–1302.
  • Srivastava, N. and Salakhutdinov, R. (2012) ldquo, multimodal learning with deep Boltzmann machines, in Proceedings of Neural Information and Processing Systems. Neural Information Processing Systems, Lake Tahoe, Nevada, pp. 2222–2230.
  • Suk, H.-Il, Lee, S.-W., Shen, D., Alzheimer’s Disease Neuroimaging Initiative, et al. (2017) Deep ensemble learning of sparse regression models for brain disease diagnosis. Medical Image Analysis, 37, 101–113.
  • Tmazirte, N.A., El Najjar, M.E., Smaili, C. and Pomorski, D. (2013) Dynamical reconfiguration strategy of a multi sensor data fusion algorithm based on information theory, in 2013 IEEE Intelligent Vehicles Symposium (IV), IIE Press, Piscataway, NJ, pp. 896–901.
  • Tucker, L.R. (1958) An inter-battery method of factor analysis. Psychometrika, 23(2),111–136.
  • Tucker, L.R. (1964) The extension of factor analysis to three-dimensional matrices. Contributions to Mathematical Psychology, 110119.
  • Van der Maaten, L. and Hinton, G. (2008) Visualizing data using t-SNE. Journal of Machine Learning Research, 9, 2579–2605.
  • Van Mechelen, I. and Smilde, A.K. (2010) A generic linked-mode decomposition model for data fusion. Chemometrics and Intelligent Laboratory Systems, 104(1), 83–94.
  • Vielzeuf, V., Lechervy, A., Pateux, S. and Jurie, F. (2018) Centralnet: A multilayer approach for multimodal fusion, in Proceedings of the European Conference on Computer Vision (ECCV), ECCV, Munich, Germany, pp. 1–15.
  • Virtanen, V., Klami, A., Khan, S. and Kaski, S. (2012) Bayesian group factor analysis, in Artificial Intelligence and Statistics, PMLR, La Palma, Canary Islands, pp. 1269–1277.
  • Wang, J., Ma, Y., Zhang, L., Gao, R.X. and Wu, D. (2018) Deep learning for smart manufacturing: Methods and applications. Journal of Manufacturing Systems, 48, 144–156.
  • Wang, Y., Chen, R., Ghosh, J., Denny, J.C., Kho, A., Chen, Y., Malin, B.A. and Sun, J. (2015) Rubik: Knowledge guided tensor factorization and completion for health data analytics, in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1265–1274.
  • Wang, Y., Guan, L. and Venetsanopoulos, A.N. (2012) Kernel cross-modal factor analysis for information fusion with application to bimodal emotion recognition. IEEE Transactions on Multimedia, 14(3), 597–607.
  • White, M. and Schuurmans, D. (2012) Generalized optimal reverse prediction, in Artificial Intelligence and Statistics, PMLR, La Palma, Canary Islands, pp. 1305–1313.
  • White, M., Zhang, X., Schuurmans, D. and Yu, Y.-l. (2012) Convex multi-view subspace learning, in Advances in Neural Information Processing Systems, Neural Information Processing Systems, Lake Tahoe, Nevada, pp. 1673–1681.
  • Wu, D., Pigou, L., Kindermans, P.-J., Le, N.D.-H., Shao, L., Dambre, J. and Odobez, J.-M. (2016) Deep dynamic neural networks for multimodal gesture segmentation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(8), 1583–1597.
  • Xiang, S., Yuan, L., Fan, W., Wang, Y., Thompson, P.M., Ye, J., Alzheimer’s Disease Neuroimaging Initiative, et al. (2014) Bi-level multi-source learning for heterogeneous block-wise missing data. NeuroImage, 102, 192–206.
  • Xiao, Y., Wang, Y. and Ding, Z. (2018) The application of heterogeneous information fusion in misalignment fault diagnosis of wind turbines. Energies, 11(7), 1–15.
  • Yadav, B., Gopalacharyulu, P., Pemovska, T., Khan, S.A., Szwajda, A., Tang, J., Wennerberg, K. and Aittokallio, T. (2015) From drug response profiling to target addiction scoring in cancer cell models. Disease Models & Mechanisms, 8(10),1255–1264.
  • Yan, H., Paynabar, K. and Pacella, M. (2019) Structured point cloud data analysis via regularized tensor regression for process modeling and optimization. Technometrics, 61(3), 385–395.
  • Yan, H., Paynabar, K. and Shi, J. (2014) Image-based process monitoring using low-rank tensor decomposition. IEEE Transactions on Automation Science and Engineering, 12(1), 216–227.
  • Yokoya, N., Ghamisi, P. and Xia, J. (2017) Multimodal, multitemporal, and multisource global data fusion for local climate zones classification based on ensemble learning, in 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE Press, Piscataway, NJ, pp. 1197–1200.
  • Yoon, H. and Li, J. (2018) A novel positive transfer learning approach for telemonitoring of Parkinson’s disease. IEEE Transactions on Automation Science and Engineering, 16(1), 180–191.
  • Yue, S., Park, J.G., Liang, Z. and Shi, J. (2020) Tensor mixed effects model with application to nanomanufacturing inspection. Technometrics, 62(1), 116–129.
  • Zhang, C. and Ma, Y. (2012) Ensemble Machine Learning: Methods and Applications. Berlin/Heidelberg, Germany: Springer.
  • Zhang, C., Yan, H., Lee, S. and Shi, J. (2018) Weakly correlated profile monitoring based on sparse multi-channel functional principal component analysis. IISE Transactions, 50(10), 878–891.
  • Zhang, C., Yan, H., Lee, S. and Shi, J. (2020) Dynamic multivariate functional data modeling via sparse subspace learning. Technometrics, 1–33.
  • Zhang, L., Xie, Y., Xidao, L. and Zhang, X. (2018a) Multi-source heterogeneous data fusion, in 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD), IEEE Press, Piscataway, NJ, pp. 47–51.
  • Zhang, C., Yan, H., Lee, S. and Shi, J. (2018b) Weakly correlated profile monitoring based on sparse multi-channel functional principal component analysis. IISE Transactions, 50(10), 878–891.
  • Zhang, X., Yu, Y., White, M., Huang, R. and Schuurmans, D. (2011) Convex sparse coding, subspace learning, and semi-supervised extensions, in Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI, San Francisco, CA.
  • Zhao, Q., Caiafa, C.F., Mandic, D.P., Chao, Z.C., Nagasaka, Y., Fujii, N., Zhang, L. and Cichocki, A. (2012) Higher order partial least squares (hopls): A generalized multilinear regression method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(7), 1660–1673.
  • Zhou, H., Li, L. and Zhu, H. (2013) Tensor regression with applications in neuroimaging data analysis. Journal of the American Statistical Association, 108(502), 540–552.
  • Zhu, Z., Yin, H., Chai, Y., Li, Y. and Qi, G. (2018) A novel multi-modality image fusion method based on image decomposition and sparse representation. Information Sciences, 432, 516–529.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.