1,890
Views
1
CrossRef citations to date
0
Altmetric
Article

The association between cocaine use detected on drug screening and rhabdomyolysis

ORCID Icon, , , , & ORCID Icon

References

  • United Nations. World Drug Report 2019 [accessed 2020 Feb 19]. Available from: https://wdr.unodc.org/wdr2019/prelaunch/WDR19_Booklet_4_STIMULANTS.pdf
  • Substance Abuse and Mental Health Services Administration (SAMHSA). 2018 National Survey on Drug Use and Health (NSDUH) [accessed 2020 Feb 19]. Available from: https://www.samhsa.gov/data/nsduh/reports-detailed-tables-2018-NSDUH
  • Kariisa M, Scholl L, Wilson N, et al. Drug overdose deaths involving cocaine and psychostimulants with abuse potential – United States, 2003-2017. MMWR Morb Mortal Wkly Rep. 2019;68(17):388–395.
  • Richards JR. Rhabdomyolysis and drugs of abuse. J Emerg Med. 2000;19(1):51–56.
  • Cervellin G, Comelli I, Benatti M, et al. Non-traumatic rhabdomyolysis: background, laboratory features, and acute clinical management. Clin Biochem. 2017;50(12):656–662.
  • Ruttenber AJ, McAnally HB, Wetli CV. Cocaine-associated rhabdomyolysis and excited delirium: different stages of the same syndrome. Am J Forensic Med Pathol. 1999;20(2):120–127.
  • Roth D, Alarcón FJ, Fernandez JA, et al. Acute rhabdomyolysis associated with cocaine intoxication. N Engl J Med. 1988;319(11):673–677.
  • Merigian KS, Roberts JR. Cocaine intoxication: hyperpyrexia, rhabdomyolysis and acute renal failure. J Toxicol Clin Toxicol. 1987;25(1-2):135–148.
  • Brody SL, Wrenn KD, Wilber MM, et al. Predicting the severity of cocaine-associated rhabdomyolysis. Ann Emerg Med. 1990;19(10):1137–1143.
  • Welch RD, Todd K, Krause GS. Incidence of cocaine-associated rhabdomyolysis. Ann Emerg Med. 1991;20(2):154–157.
  • O’Connor AD, Padilla-Jones A, Gerkin RD, et al. Prevalence of rhabdomyolysis in sympathomimetic toxicity: a comparison of stimulants. J Med Toxicol. 2015;11(2):195–200.
  • Bywaters EG, Delory GE, Rimington C, et al. Myohaemoglobin in the urine of air raid casualties with crushing injury. Biochem J. 1941;35(10-11):1164–1168.
  • Fantel AG, Barber CV, Mackler B. Ischemia/reperfusion: a new hypothesis for the developmental toxicity of cocaine. Teratology. 1992;46(3):285–292.
  • Beckman Coulter Chemistry Information Sheet: Cocaine Metabolite [accessed 2020 Jan 3]. Available from: https://www.beckmancoulter.com/wsrportal/techdocs?docname=/cis/A18482/%%/EN_COCM.pdf
  • World Health Organization. International statistical classification of diseases and related health problems 10th revision [accessed 2020 Jan 3]. Available from: https://icd.who.int/browse10/2016/en
  • Pagala M, Amaladevi B, Azad D, et al. Effect of cocaine on leakage of creatine kinase from isolated fast and slow muscles of rat. Life Sci. 1993;52(8):751–756.
  • Brazeau GA, McArdle A, Jackson MJ. Effects of cocaine on leakage of creatine kinase from skeletal muscle: in vitro and in vivo studies in mice. Life Sci. 1995;57(17):1569–1578.
  • Capaldo A, Gay F, Lepretti M, et al. Effects of environmental cocaine concentrations on the skeletal muscle of the European eel (Anguilla anguilla). Sci Total Environ. 2018;640-641:862–873.
  • Hüttemann M, Helling S, Sanderson TH, et al. Regulation of mitochondrial respiration and apoptosis through cell signaling: cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. Biochim Biophys Acta. 2012;1817(4):598–609.
  • Brentnall M, Rodriguez-Menocal L, De Guevara RL, et al. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 2013;14(1):32.
  • Cunha-Oliveira T, Rego AC, Cardoso SM, et al. Mitochondrial dysfunction and caspase activation in rat cortical neurons treated with cocaine or amphetamine. Brain Res. 2006;1089(1):44–54.
  • Li G, Xiao Y, Zhang L. Cocaine induces apoptosis in fetal rat myocardial cells through the p38 mitogen-activated protein kinase and mitochondrial/cytochrome c pathways. J Pharmacol Exp Ther. 2005;312(1):112–119.
  • Su J, Li J, Li W, et al. Cocaine induces apoptosis in cerebral vascular muscle cells: potential roles in strokes and brain damage. Eur J Pharmacol. 2003;482(1-3):61–66.
  • He J, Xiao Y, Casiano CA, et al. Role of mitochondrial cytochrome c in cocaine-induced apoptosis in coronary artery endothelial cells. J. Pharmacol. Exp. Ther. 2000;295(3):896–903.
  • Saady JJ, Bowman ER, Aceto MD. Cocaine, ecgonine methyl ester, and benzoylecgonine plasma profiles in rhesus monkeys. J Anal Toxicol. 1995;19(7):571–575.
  • Valente MJ, Carvalho F, Bastos M, et al. Contribution of oxidative metabolism to cocaine-induced liver and kidney damage. Curr Med Chem. 2012;19(33):5601–5606.
  • Boess F, Ndikum-Moffor FM, Boelsterli UA, et al. Effects of cocaine and its oxidative metabolites on mitochondrial respiration and generation of reactive oxygen species. Biochem Pharmacol. 2000;60(5):615–623.
  • Li SF, Zapata J, Tillem E. The prevalence of false-positive cardiac troponin I in ED patients with rhabdomyolysis. Am J Emerg Med. 2005;23(7):860–863.
  • Casartelli A, Dacome L, Tessari M, et al. Cocaine-associated increase of atrial natriuretic peptides: an early predictor of cardiac complications in cocaine users? Heart Asia. 2014;6(1):100–107.
  • Richards JR, Tabish N, Wang CG, et al. Cocaine versus methamphetamine users in the emergency department: how do they differ? J Alcohol Drug Depend. 2017;05(03):264.
  • Festa ED, Quinones-Jenab V. Gonadal hormones provide the biological basis for sex differences in behavioral responses to cocaine. Horm Behav. 2004;46(5):509–519.
  • Evans SM, Foltin RW. Exogenous progesterone attenuates the subjective effects of smoked cocaine in women, but not in men. Neuropsychopharmacology. 2006;31(3):659–674.
  • Crombag HS, Mueller H, Browman KE, et al. A comparison of two behavioral measures of psychomotor activation following intravenous amphetamine or cocaine: dose- and sensitization-dependent changes. Behav Pharmacol. 1999;10(2):205–213.
  • Kaufman MJ, Levin JM, Maas LC, et al. Cocaine-induced cerebral vasoconstriction differs as a function of sex and menstrual cycle phase. Biol Psychiatry. 2001;49(9):774–781.
  • Lynch WJ, Kalayasiri R, Sughondhabirom A, et al. Subjective responses and cardiovascular effects of self-administered cocaine in cocaine-abusing men and women. Addict Biol. 2008;13(3-4):403–410.
  • Morishima HO, Abe Y, Matsuo M, et al. Gender-related differences in cocaine toxicity in the rat. J. Lab. Clin. Med. 1993;122(2):157–163.
  • Lukas SE, Sholar M, Lundahl LH, et al. Sex differences in plasma cocaine levels and subjective effects after acute cocaine administration in human volunteers. Psychopharmacology (Berl). 1996;125(4):346–354.
  • Vongpatanasin W, Mansour Y, Chavoshan B, et al. Cocaine stimulates the human cardiovascular system via a central mechanism of action. Circulation. 1999;100(5):497–502.
  • Ghanbari F, Khaksari M, Vaezi G, et al. Hydrogen sulfide protects hippocampal neurons against methamphetamine neurotoxicity via inhibition of apoptosis and neuroinflammation. J Mol Neurosci. 2019;67(1):133–141.
  • Kovacic P. Role of oxidative metabolites of cocaine in toxicity and addiction: oxidative stress and electron transfer. Med Hypotheses. 2005;64(2):350–356.
  • Dietrich JB, Mangeol A, Revel MO, et al. Acute or repeated cocaine administration generates reactive oxygen species and induces antioxidant enzyme activity in dopaminergic rat brain structures. Neuropharmacology. 2005;48(7):965–974.
  • Jayanthi S, Deng X, Noailles PA, et al. Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondria-dependent death cascades. FASEB J. 2004;18(2):238–251.