18,610
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Microalgae: a potential plant for energy production

&
Pages 104-120 | Received 02 Dec 2016, Accepted 19 Apr 2017, Published online: 15 Jun 2017

References

  • Adey, W.H. (1982 June). Algal turf scrubber. U.S. Patent No. 4333263. Washington, DC: U.S. Patent and Trademark Office.
  • Afkar, A., Ababna, H., & Fathi, A.A. (2010). Toxicological response of the green alga Chlorella vulgaris to some heavy metals. American Journal of Environmental Sciences, 6, 230–237.10.3844/ajessp.2010.230.237
  • Ajjabi, L.C., & Chouba, L. (2009). Biosorption of Cu+2 and Zn2+ from aqueous solutions by dried marine green macroalga Chaetomorpha linum. Journal of Environmental Management, 90, 3485–3489.
  • Baeza-Squiban, A., Bouaicha, N., Santa-Maria, A., & Marano, F. (1990). Demonstration of the excretion by Dunaliella bioculata of esterases implicated in the metabolism of Deltamethrin, a pyrethroid insecticide. Bulletin of Environmental Contamination and Toxicology, 45, 39–45.10.1007/BF01701826
  • Bhat, S.V., Melo, J.S., Chaugule, B.B., & Souza, S.F.D. (2008). Biosorption characteristics of uranium (VI) from aqueous medium onto Catenella repens, a red alga. Journal of Hazardous Materials, 158, 628–635.10.1016/j.jhazmat.2008.02.042
  • Bocci, F., Ttorzillo, G., Vincenzini, M., Materassi, R. (1988). Growth physiology of Spirulina platensis in tubular photobioreactor under natural light. In T. Stadler, J. Mollion, M.C. Verdus, Y. Karamanos, H. Morvan, D. Christiaen (Eds.), Algal biotechnology (pp. 15–26). London: Eelsevier Applied Science.
  • Borowitzka, L.J., & Borowitzka, M.A. (1989a). Carotene (Provitamin A) production with algae. In E.J. Vandamme (Ed.), Biotechnology of vitamins, pigments and growth factors, (pp. 15–26). London: Elsevier Applied Science.
  • Borowitzka, L.J., & Borowitzka, M.A. (1989b). Industrial production: methods and economics. In R. C. Cresswell, T. A. V. Rees, & N. Shah (Eds.), Algal and cyanobacterial biotechnology (pp. 244–316). London: Longman Scientific.
  • Brune, D.E., Lundquist, T.J., & Benemann, J.R. (2009). Microalgal biomass for greenhouse gas reductions: Potential for replacement of fossil fuels and animal feeds. Journal of Environmental Engineering, 135, 1136–1144.10.1061/(ASCE)EE.1943-7870.0000100
  • Carpenter, M., Robertson, J., & Skierkowski, P. (1989). Biodegradation of an oily bilge waste using algae. Biotreatment. The use of microorganisms in the treatment of hazardous materials and hazardous wastes. O (pp. 141–150). Odisha, India: The Hazardous Materials Control Research Institute.
  • Cerniglia, C.E., Gibson, D.T., & Van Baalen, C. (1980). Oxidation of napthalene by Cyanobacteria and microalgae. Microbiology, 116, 495–500.
  • Chaiprasert, P. (2011). Biogas production from agricultural wastes in Thailand. Journal of Sustainable Energy & Environment Special Issue, 63–65.
  • Chakraborty, N., Banerjee, A., & Pal, R. (2011). Accumulation of lead by free and immobilized cyanobacteria with special reference to accumulation factor and recovery. Bioresource Technology, 102, 4191–4195.10.1016/j.biortech.2010.12.028
  • Chaumont, D., Thepenier, C., Gudin, C., & Junjias, C. 1988. Scaling up a tubular photoreactor for continuous culture of Porphyridium cruentum from laboratory to pilot plant (1981–1987). In T. Stadler, J. Mollion, M.Cc. Verdus, Y. Karamanos, H. Morvan, D. Cchristiaen (Eds.), Algal biotechnology (pp. 199–208). London: Elsevier Applied Science.
  • Chen, C., Chang, H., Kao, P., Pan, J., & Chang, J. (2012). Biosorption of cadmium by CO2-fixing microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 105, 74–80.10.1016/j.biortech.2011.11.124
  • Chen, Z., Ma, W., & Han, M. (2008). Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): Application of isotherm and kinetic models. Journal of Hazardous Materials, 155, 327–333.10.1016/j.jhazmat.2007.11.064
  • Chevalier, P., & de la Noüe, J. (1985). Wastewater nutrient removal with microalgae immobilized in carrageenan. Enzyme and Microbial Technology, 7, 621–624.10.1016/0141-0229(85)90032-8
  • Craggs, R.J. (2005). Advanced integrated wastewater ponds. In A. Shilton (Ed.), Pond treatment technology (pp. 282–310). London: IWA Scientific and Technical Report Series, IWA.
  • Craggs, R.J., Green, F.B., & Oswald, W.J. (1999). Economic and energy requirements of advanced integrated wastewater pond systems (AIWPS). Proceedings of the NZWWA Annual Conference, pp. 1–7.
  • Curtis, T.P., Mara, D.D., & Silva, S.A. (1992). Influence of pH, oxygen and humic substances on ability of sunlight to damage faecal coliforms in waste stabilization pond water. Applied and Environmental Microbiology, 58, 1335–1343.
  • Darnall, D.W., Greene, B., Henzl, M.T., Hosea, J.M., McPherson, R.A., Sneddon, J., & Alexander, M.D. (1986). Selective recovery of gold and other metal ions from an algal biomass. Environmental Science & Technology, 20, 206–208.10.1021/es00144a018
  • Davis, E.A., Dedrick, J., French, C.S., Milner, H.W., Myers, J., Smith, J.H.C., & Spoehr, H.A. (1953). Laboratory experiments on Chlorella culture at the Carnegie Institution of Washington Department of Plant Biology. In J. S. Burlew (Ed.), Algal culture. From laboratory to pilot plant (pp. 105–153). Washington, DC: Ccarnegie Institution of Washington.
  • De la Noüe, J., & Proulx, D. 1988. Tertiary treatment of urban wastewater by chitosan-immobilized Phormidium sp. In T. Stadler, J. Mollion, M.C. Verdus, Y. Kamaranos, H. Morvan, D. Christaien (Eds.), Algal biotechnology (pp. 159–168). New York, NY: Elsevier Applied Science.
  • De la Noüe, J., Chevalier, P., & Proulx, D. 1990. Effluent treatment with immobilized microalgae and cyanobacteria: a critical assessment. In T. Tyagi, Vembuk (Eds.), Wastewater treatment by immobilized cells (pp. 143–152). Boca Raton, FL: CRC Press.
  • Feachem, R.G., Bradley, D.J., Garelick, H., & Mara, D.D. 1983. Sanitation and disease: Health aspects of excreta and wastewater management. Chichester: Wiley
  • Filip, S.D., Peters, T., & Adams, V.D. (1979). Middle brooks E.J. Residual heavy metal removal by an algae-intermittent sand filtration system. Water Research, 13, 305–313.10.1016/0043-1354(79)90211-2
  • Finlayson, C.M., & Chick, A.J. (1983). Testing the potential of aquatic plants to treat abattoir effluent. Water Research, 17, 415–422.10.1016/0043-1354(83)90138-0
  • Finlayson, M., Chick, A., von Oertzen, I., & Mitchell, D. (1987). Treatment of piggery effluent by an aquatic plant filter. Biological Wastes, 19, 179–196.10.1016/0269-7483(87)90051-6
  • Gale, N. L. (1986). The role of algae and other microorganisms in metal detoxification and environmental clean-up. Biotechnology and Bioengineering Symposium, 16, 171–180.
  • Garbisu, C., Gil, J.M., Bazin, M.J., Hall, D.O., & Serra, J.L. (1991). Removal of nitrate from water by foam-immobilized Phormidium laminosum in batch and continuous-flow bioreactors. Journal of Applied Phycology, 3, 1–14.
  • García, J., Green, B.F., Lundquist, T., Mujeriego, R., Hernández-Mariné, M., & Oswald, W.J. (2006). Long term diurnal variations in contaminant removal in high rateponds treating urban wastewater. Bioresource Technology, 97, 1709–1715.10.1016/j.biortech.2005.07.019
  • Golueke, C.G., Oswald, W.J., & Gotaas, H.B. (1957). Anaerobic digestion of algae. Applied Microbiology, 5, 47–55.
  • Gupta, V.K., & Rastogi, A. 2008. Biosorption of lead (II) from aqueous solution by non-living algal biomass Oedogonium sp. and Nostoc sp.- A comparative study. Colloids and Surfaces B: Biointerfaces, 64, 170–178. 
  • Gupta, V.K., Rastogi, A., & Nayak, A. (2010). Biosorption of nickel onto treated alga (Oedogonium hatei): Application of isotherm and kinetic models. Journal of Colloid and Interface Science, 342, 533–539.10.1016/j.jcis.2009.10.074
  • Hall, D.O., & Rao, K.K. (1989). Immobilized photosynthetic membranes and cells for the production of fuel and chemicals. Chimicaoggi, 3, 40–47.
  • Han, X., Wong, Y.S., Wong, M.H., & Tam, N.F.Y. (2007). Biosorption and bioremedation of Cr(VI) by a microalgal isolate. Journal of Hazardous Materials, 146, 65–72.10.1016/j.jhazmat.2006.11.053
  • Hashimoto, S., & Furukawa, K. (1989). Nutrient removal from secondary effluent by filamentous algae. Journal of Fermentation and Bioengineering, 67, 62–69.10.1016/0922-338X(89)90088-3
  • Jensen, A. (1976). Dialysis culture in integrated aquaculture. In O. Devik (Ed.), Harvesting polluted waters (pp. 143–149). New York, NY: Plenum Publishing Corp.10.1007/978-1-4613-4328-8
  • John et al., 2002. A Biodiversity: number of species of freshwater and terrestrial algae; adapted from Sigee et al, (2004). Freshwater algae: identification and use as bioindicators, pp. 5–7.
  • Kayombo, S., Mbwette, T.S.A., Mayo, A.W., Katima, J.H.Y., & Jorgensen, S.E. (1999). Modelling diurnal variation of dissolved oxygen in waste stabilization ponds. Proceedings of the 4th International Specialist Conference on Waste Stabilization Ponds: Technology and Environment; Poster Session, IAWQ, Marrakech, Morocco.
  • Kiran, B., Kaushik, A., & Kaushik, C.P. (2007). Biosorption of Cr(VI) by native isolate of Lyngbya putealis (HH-15) in the presence of salts. Journal of Hazardous Materials, 141, 662–667.10.1016/j.jhazmat.2006.07.026
  • Kiran, S., Sandberg, C., & Sebastian, R. (2011). Treatment of category generation and retrieval in aphasia: effect of typicality of category items. Journal of Speech Language Hearing Research., 54, 1101–1117. doi:10.1044/1092-4388(2010/10-0117)
  • Kumar, D., & Gaur, J.P. (2011). Metal biosorption by two cyanobacterial mats in relation to pH, biomass concentration, pretreatment and reuse. Bioresource Technology, 102, 2529–2535.10.1016/j.biortech.2010.11.061
  • Kumar, D., Rai, J., & Gaur, J.P. (2012). Removal of metal ions by Phormidium bigranulatum (Cyanobacteria)-dominated mat in batch and continuous flow systems. Bioresource Technology, 104, 202–207.10.1016/j.biortech.2011.11.002
  • Lavoie, A., & De la Noüe, J. (1983). Harvesting microalgae with chitosan. Journal of the World Mariculture Society, 14, 685–694.
  • Lavoie, A., & de la Noüe, J. (1985). Hyperconcentrated cultures of Scenedesmus obliquus. A new approach for wastewater biological tertiary treatment. Water Research, 19, 1437–1442.10.1016/0043-1354(85)90311-2
  • Lee, E.T.Y., & Bazin, M.J. (1990). A laboratory scale air-lift helical photobioreactor to increase biomass output rate of photosynthetic algal cultures. New Phytologist, 116, 331–335.10.1111/nph.1990.116.issue-2
  • Liu, Y., Cao, Q., Luo, F., & Chen, J. (2009). Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae. Journal of Hazardous Materials, 163, 931–938.10.1016/j.jhazmat.2008.07.046
  • Lourie, E., & Gjengedal, E. (2011). Metal sorption by peat and algae treated peat: Kinetics and factors affecting the process. Chemosphere, 85, 759–764.10.1016/j.chemosphere.2011.06.055
  • McHardy, B.M., & George, J.J. (1990). Bioaccumulation and toxicity of zinc in green alga Cladophora glomerata. Environmental Pollution, 66, 55–66.10.1016/0269-7491(90)90198-L
  • Mara, D.D. (1987). Waste stabilization ponds: Problems and controversies. Water Quality International, 1, 20–22.
  • Mara, D.D. 1989. The conservation of drinking-water supplies: Techniques for lowincome settlements. Nairobi: United Nations Centre for Human Settlements.
  • Marais, G.V.R. (1970). Dynamic behaviour of oxidation ponds. In R.E. McKinney (Ed.), Proceedings of the Second International Symposium on Waste Treatment Lagoons (pp. 15–46). Laurence, KS: University of Kansas.
  • Markov, S.A., Bazin, M.J., & Hall, D.O. (1995). Hydrogen, photoproduction and carbon dioxide uptake by immobilized Anabaena variabilis in a hollow-fiber photobioreactor. Enzyme and Microbial Technology, 17, 306–310.10.1016/0141-0229(94)00010-7
  • Marsot, P., Cembella, A., & Houle, L. (1991). Growth kinetics and nitrogen-nutrition of the marine diatom Phaeodactylum tricomutum in continuous dialysis culture. Journal of Applied Phycology, 3, 1–10.10.1007/BF00003914
  • Mohamed, N.A. (1994). Application of algal ponds for wastewater treatment and algal production. ( M.Sc. thesis). Fac.of Sci. (Cairo Univ.) Bani-Sweef Branch.
  • Morales, J., de la Noüe, J., & Picard, G. (1985). Harvesting marine microalgae species by chitosan flocculation. Aquacultural Engineering, 4, 257–270.10.1016/0144-8609(85)90018-4
  • Nakajima, A., Horikoshi, T., & Sakagushi, T. (1981). Recovery of varnlum by immobilized microorganisms. European Journal of Applied Microbiology and Biotechnology, 16, 88–91.
  • Nasreen, A., Muhammad, I., Iqbal, Z.S., & Javed, I. (2008). Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr(III). Journal of Environmental Sciences, 20, 231–239.
  • Ney, J.M., Conary, C.L., & Chapman, S.R. (1981). High density diatom production utilizing dialysis techniques. Aquaculture, 24, 363–369.10.1016/0044-8486(81)90070-3
  • Ochiai, H., Shibata, H., Sawa, Y., & Katoh, T. (1980). “Living electrode” as a long-lived photoconverter for biophotolysis of water. Proceedings of the National Academy of Sciences USA, 77, 2442–2444.10.1073/pnas.77.5.2442
  • Ochiai, H., Shibata, H., Sawa, Y., Shoga, M., & Ohta, S. (1983). Properties of semiconductor electrodes coated with living films of cyanobacteria. Applied Biochemistry and Biotechnology, 8, 289–303.10.1007/BF02779496
  • Pahlavanzadeh, H., Keshtkar, A.R., Safdari, J., & Abadi, Z. (2010). Biosorption of nickel (II) from aqueous solution by brown algae: Equilibrium, dynamic and thermodynamic studies. Journal of Hazardous Materials, 175, 304–310.10.1016/j.jhazmat.2009.10.004
  • Pandi, M., Shashirekha, V., & Swamy, M. (2009). Biosorption of chromium from retan chrome liquor by cyanobacteria. Microbiological Research, 164, 420–428.10.1016/j.micres.2007.02.009
  • Palmer, C.M. 1959. Algae in water supplies US Dept. of Health, Edu. and Wel, Pub Health Service, Cincinnati.
  • Park, J.B.K., & Craggs, R.J. (2010). Wastewater treatment and algal production in highrate algal ponds with carbon dioxide addition. Water Science and Technology, 61, 633–639.10.2166/wst.2010.951
  • Payer, H.D., & Runkel, K.H. (1978). Environmental pollutants in freshwater algae from open-air mass cultures. Arch. Hydrobiol. Beih., 11, 184–198.
  • Pearson, H.W., Mara, D.D., Konig, A., De Oliveira, R., Mills, S.W., Smallman, D.J., & Silva, S.A. (1987). Water column sampling as a rapid and efficient method of determining effluent quality and performance of waste stabilization ponds. Water Science and Technology, 19, 100–119.
  • Perlack, R.D., Wright, L.L., Turhollow, A.F., Graham, R.L., Stokes, B.J., & Erbach, D.C. (2005). Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply (p. 78). US Department of Energy and US Department of Agriculture.
  • Piotrowska-Niczyporuk, A., Bajguz, A., Zambrzycka, E., & Godlewska-Żyłkiewicz, B. (2012). Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiology and Biochemistry, 52, 52–65.10.1016/j.plaphy.2011.11.009
  • Pirt, S.J., Lee, Y.K., Walach, M.R., Pirt, M.W., Balyuzi, H.H.M., & Bazin, M.J. (1983). A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: design and performance. Journal of Chemical Technology and Biotechnology Biotechnology, 33B, 35–58.
  • Pirt, S. J. (1986). Culture growth and apparatus therefore. UK Patent No. 2118572.
  • Powell, N., Shilton, A., Chisti, Y., & Pratt, S. (2009). Towards a luxury uptake process via microalgae – Defining the polyphosphate dynamics. Water Research, 43, 4207–4213.10.1016/j.watres.2009.06.011
  • Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65, 635–648. doi:10.1007/s00253-004-1647-x
  • Rai, L.C., Gaur, J.P., & Kumar, H.D. (1981). Phycology and heavy-metal pollution. Biological Reviews, 56, 99–151.10.1111/brv.1981.56.issue-2
  • Rajfur, M., Klos, A., & Waclawek, M. (2010). Sorption of copper (II) ions in the biomass of alga Spirogyra sp. Bioelectrochemistry, 80, 81–86.
  • Reiniger, P. (1977). Concentration of cadmium in aquatic plants and algal mass in flooded rice culture. Environmental Pollution (1970), 14, 297–301.10.1016/0013-9327(77)90141-0
  • Robinson, P.K., Reeve, J.O., & Goulding, K.H. (1988). Phosphorous uptake kinetics of immobilized Chlorella in batch and continuous culture. Enzyme and Microbial Technology, 11, 590–596.
  • Samson, R., & LeDuy, A. (1983). Improved performance of anaerobic digestion of Spirulina maxima algal biomass by addition of carbon-rich wastes. Biotechnology Letters, 5, 677–682.10.1007/BF01386361
  • Sari, A., & Tuzen, M. (2008). Biosorption of Pb(II) and Cd (II) from aqueous solution using green alga (Ulva lactuca) biomass. Journal of Hazardous Materials, 152, 302–308.
  • Sawayama, S., Rao, K.K., & Hall, D.O. (1998). Nitrate and phosphate ions removal from water by Phormidium laminosum immobilized on hollow fibres in a photobioreactor. Applied Microbiology and Biotechnology, 49, 463–468.10.1007/s002530051199
  • Shaaban, A.M., Haroun, B.M., Ibraheem, I.B.M. 2004. Assessment of impact of Microcystis aeruginosa and Chlorella vulgaris in the uptake of some heavy metals from culture media. In Proc. 3rd Int. Conf. Biol. Sci. Fac. Sci., Tanta Univ., 28–29 April, vol. 3, pp. 433–450.
  • Schimdt, K. (1991). Antioxidant vitamins and beta-carotene-effects on immunocompetence. The American Journal of Clinical Nutrition, 53, S383–S385.
  • Sheehan, J., Dunahay, T., Benemann, J., Roessler, P. (1998). A look back at the U.S. department of energy’s aquatic species program – Biodiesel from Algae, NERL/TP-580-24190. Golden, CO: National Renewable Energy Laboratory, 80401.
  • Singh, L., Pavankumar, A.R., & Lakshmanan, R. (2012). Effective removal of Cu2+ ions from aqueous medium using alginate as biosorbent. Ecological Engineering, 38, 119–124.10.1016/j.ecoleng.2011.10.007
  • Sialve, B., Bernet, N., & Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 27, 409–416.10.1016/j.biotechadv.2009.03.001
  • Soeder, C.J., Payer, H.D., Runkel, K.H., Beine, J., & Briele, E. (1978). Sorption and concentration of toxic minerals by mass cultures of Chlorococcales. Mitt. Internat. Verein. Limnol., 21, 575–584.
  • Tastan, B.E., Duygu, E., & Dönmez, G. (2012). Boron bioremoval by a newly isolated Chlorella sp. and its stimulation by growth stimulators. Water Research, 46, 167–175.10.1016/j.watres.2011.10.045
  • Travieso, L., Benitez, F., & Dupeiron, R. (1992). Sewage treatment using immobilized microalgae. Bioresource Technology, 40, 183–187.10.1016/0960-8524(92)90207-E
  • Torzillo, G., Pushparaj, B., Bocci, F., Balloni, W., Materassi, R.R., & Florenzano, G. (1986). Production of Spirulina biomass in closed photobioreactors. Biomass, 11, 61–74.10.1016/0144-4565(86)90021-1
  • Tuzen, M., & Sarı, A. (2010). Biosorption of selenium from aqeous solution by green algae (Cladophora hutchinsiae) biomass: Equilibrium, thermodynamic and kinetic studies. Chemical Engineering Journal, 158, 200–206.10.1016/j.cej.2009.12.041
  • US, DOE. (2009). National algal biofuels technology roadmap. Office of energy efficiency and, renewable energy (p. 214). Retrieved from http://biomass.energy.gov
  • Werblan, D., Smith, R.J., Van der Valk, A.G., & Davis, C.B. (1978). Treatment of waste from a confined hog feeding unit by using artificial marshes. In H.L. Mickim (Ed.), Proceedings of international symposium on land treatment of wastewater (pp. 1–13). New Hapshire: Hannover.
  • Wright, P.J., & Weber, J.H. (1991). Biosorption of inorganic Tin and Methyltin compounds by estuarine macrolagae. Environmental Science & Technology, 25, 287–294.10.1021/es00014a011
  • Wolverton, B.C. (1982). Hybrid wastewater treatment system using anaerobic microorganisms and red (Phragmites communis). Economic Botany, 36, 373–380.
  • Woertz, I.C., Lundquist, T.J., Feffer, A.S., & Nelson, Y.M. (2009). Lipid productivity of algae grown during treatment of dairy and municipal wastewaters. Journal of Environmental Engineering, 135, 1115–1122.10.1061/(ASCE)EE.1943-7870.0000129
  • Wu, X.F., & Kosaric, N. (1991). Removal of organochlorine compounds in an upflow flocculated algae photo-bioreactor. Water Science Technology, 24, 221–232.
  • Yee, N., Benning, L.G., Phoenix, V.R., & Ferris, F.F. (2004). Characterization of metal-cyanobacteria sorption reactions: A combined macroscopic and infrared spectroscopic investigation. Environmental Science & Technology, 38, 775–782.10.1021/es0346680
  • Yen, H.-W. (2004). Anaerobic bioassay of methane potential of microalgal biomass (Ph.D. dissertation). Biosystems Engineering, Clemson University, Clemson.
  • Yen, H.-W., & Brune, D.E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technology, 98, 130–134.
  • Yüce, M., Nazır, H., & Dönmez, G. (2010). An advanced investigation on a new algal sensor determining Pb(II) ions from aqueous media. Biosensors and Bioelectronics, 26, 321–326.10.1016/j.bios.2010.08.022