828
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Comparative study of Zn-phytoextraction potential in guar (Cyamopsis tetragonoloba L.) and sesame (Sesamum indicum L.): tolerance and accumulation

, , , &
Pages 29-38 | Received 04 Aug 2017, Accepted 20 Oct 2017, Published online: 19 Feb 2018

References

  • Abidi, N., Liyanage, S., Auld, D., Imel, R. K., Norman, L., Grover, K., … Trostle, C. (2015). Challenges and opportunities for increasing guar production in the United States to support unconventional oil and gas production. In Hydraulic Fracturing Impacts and Technologies (pp. 207–226). Boca Raton, FL: CRC Press.
  • Abioye, O. P., Ekundayo, O. P., & Aransiola, S. A. (2015). Bioremoval of Zinc in polluted soil using Acalypha inferno. Research Journal of Environmental Sciences, 9(5), 249. doi:10.3923/rjes
  • Ahmad, M., Ullah, K., Khan, M. A., Ali, S., Zafar, M., & Sultana, S. (2011). Quantitative and qualitative analysis of sesame oil biodiesel. Energy sources, part A: Recovery, utilization, and environmental effects, 33, 1239–1249.10.1080/15567036.2010.531510
  • Altaf, H. L., Zengqiang, Z., Zhanyu, G., Amanullah, M., Ronghua, L., Mukesh, K. A., … Hui, H. (2017). Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils. Ecotoxicology and Environmental Safety, 145, 313–323.
  • Alloway, B. J. (2013). Heavy metals and metalloids as micronutrients for plants and animals. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 195–209). The Netherlands: Springer.10.1007/978-94-007-4470-7
  • Amanullah, M., Ping, W., Amjad, A., Mukesh, K. A., Altaf, H. L., Quan, W., … Zengqiang, Z. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicology and Environmental Safety, 126, 111–121.
  • Amel, S. B., Nabil, M., Nadia, A., Hocine, G., Hakim, L., & Nadjib, D. (2016). Phytoremediation of soil contaminated with Zn using Canola (Brassica napus L.). Ecological Engineering, 95, 43–49.
  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts: Polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1–15.10.1104/pp.24.1.1
  • Ashraf, M. Y., Akhtar, K., Sarwar, G., & Ashraf, M. (2002). Evaluation of arid and semi-arid ecotypes of guar (Cyamopsis tetragonoloba L.) for salinity (NaCl) tolerance. Journal of Arid Environments, 52, 473–482.10.1006/jare.2002.1017
  • Audet, P., & Charest, C. (2007). Heavy metal phytoremediation from a meta-analytical perspective. Environmental Pollution, 147, 231–237.10.1016/j.envpol.2006.08.011
  • Chen, L., Long, X. H., Zhang, Z. H., Zheng, X. T., Rengel, Z., & Liu, Z. P. (2011). Cadmium accumulation and translocation in two Jerusalem artichoke (Helianthus tuberosus L.) cultivars. Pedosphere, 21, 573–580.10.1016/S1002-0160(11)60159-8
  • Dawodu, F. A., Ayodele, O. O., & Bolanle-Ojo, T. (2014). Biodiesel production from Sesamum indicum L. seed oil: An optimization study. Egyptian Journal of Petroleum, 23, 191–199.10.1016/j.ejpe.2014.05.006
  • Deepak, M., Sheweta, B., & Bhupendar, S. K. (2014). Guar gum: Processing, properties and food applications—A review. J Food Sci Technol., 51, 409–418.
  • Demim, S., Drouiche, N., Aouabed, A., & Semsari, S. (2013). CCD study on the ecophysiological effects of heavy metals on Lemna gibba. Ecological Engineering, 57, 302–313.10.1016/j.ecoleng.2013.04.041
  • Demim, S., Drouiche, N., Aouabed, A., Benayad, T., Couderchet, M., & Semsari, S. (2014). Study of heavy metal removal from heavy metal mixture using the CCD method. Journal of Industrial and Engineering Chemistry, 20, 512–520.10.1016/j.jiec.2013.05.010
  • Dmitry, I. B., Alexander, S. L., Naser, A. A., Ahmad, Iqbal, & Eduarda, P. (2015). Evaluation of zinc accumulation, allocation, and tolerance in Zea mays L. seedlings: Implication for zinc phytoextraction. Environmental Science and Pollution Research. doi:10.1007/s11356-015-4698-x
  • Douglas, L. S., Rudinei, D. M., André, L. G., Rodrigo, F. S., Clovis, O. D. R., & Robson, A. (2017). Growth, tolerance and zinc accumulation in Senna multijuga and Erythrina crista-galli seedlings. Revista Brasileira de Engenharia Agrícola e Ambiental, 21, 465–470.
  • Elleuch, M., Besbes, S., Roiseux, O., Blecker, C., & Attia, H. (2007). Quality characteristics of sesame seeds and by products. Food Chemistry, 103, 641–650.10.1016/j.foodchem.2006.09.008
  • Fanrong, Z., Shafaqat, A., Haitao, Z., Younan, O., Boyin, Q., Feibo, W., & Guoping, Z. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159, 84–91.
  • Fässler, E., Robinson, H., Stauffer, W., & Gupta, S. (2010). Phytomanagement of metal-contaminated agricultural land using sunflower, maize and tobacco. Agriculture, Ecosystems & Environment, 136, 49–58.10.1016/j.agee.2009.11.007
  • Hanen, Z., Tahar, G., Abelbasset, L., Rawdha, B., Rim, G., Majda, M., … Chedly, A. (2010). Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: Tolerance and accumulation. Journal of Hazardous Materials, 183, 609–615.
  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed., 534 p.). Boca Raton: CRC Press.
  • Li, W., Khan, M. A., Yamaguchi, S., & Kamiya, Y. (2005). Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. Plant Growth Regulation, 46, 45–50.10.1007/s10725-005-6324-2
  • Li, X., Yang, Y., Zhang, J., Jia, L., Li, Q., Zhang, T., … Ma, S. (2012). Zinc induced phytotoxicity mechanism involved in root growth of Triticum aestivum L. Ecotoxicology and Environmental Safety, 86, 198–203.
  • Luo, Z. B., He, X. J., Chen, L., Tang, L., Gao, S., & Chen, F. (2010). Effects of zinc on growth and antioxidant responses in Jatropha curcas seedlings. International Journal of Agriculture & Biology, 12, 119–124.
  • Muhammad, B. S., Shafaqat, A., Amjad, H., Mujahid, F., Sabir, H., TahiraY, Ullah N., … Ghulam, H. A. (2014). Citric acid improves lead (pb) phytoextractionin Brassica napus L. by mitigating pb-induced morphological and biochemical damages. Ecotoxicology and Environmental Safety, 109, 38–47.
  • Mukhopadhyay, M., Das, A., Subba, P., Bantawa, P., Sarkar, B., Ghosh, P. D., & Mondal, T. K. (2013). Structural, physiological and biochemical profiling of tea plants (Camellia sinensis (L.) O. Kuntze) under zinc stress. Biologia Plantarum, 57, 474–480.10.1007/s10535-012-0300-2
  • Neha, G., Hari, R., & Balwinder, K. (2016). Mechanism of Zinc absorption in plants: Uptake, transport, translocation and accumulation. Reviews in Environmental Science and Bio/Technology ,. doi:10.1007/s11157-016-9390-1
  • Ogunkunle, C. O., Mayank, V., Oluwatosin, E. O., & Paul, O. F. (2017). Spatial distribution of some toxic metals in topsoil and bioaccumulation in wild flora around a metal scrap factory: A case of Southwestern Nigeria. Journal of Environmental Science and Management, 20, 1–9.
  • Oh, K., Li, T., Cheng, H. Y., Xie, Y., & Yonemochi, S. (2013). Development of profitable phytoremediation of contaminated soils with biofuel crops. Journal of Environmental Protection, 4, 58–64.10.4236/jep.2013.44A008
  • Pourakbar, L., Khayami, M., Khara, J., & Farbidina, T. (2007). Physiological effects of copper on some biochemical parameters in Zea mays L. seedlings. Pakistan Journal of Biological Sciences, 10, 4092–4096.
  • Pratap, S., Mainaak, M., Suresh, K. M., Karma, D. B., Tapan, K. M., & Swapan, K. G. (2014). Zinc stress induces physiological, ultra-structural and biochemical changes in mandarin orange (Citrus reticulata Blanco) seedlings. Physiology and Molecular Biology of Plants, 20, 461–473.
  • Rachit, K., Verma, K. S., Meena, T., Yashveer, V., & Shreya, H. (2016). Phytoextraction and Bioconcentration of Heavy Metals by Spinacia oleracea Grown in Paper Mill Effluent Irrigated Soil. Nature Environment and Pollution Technology, 15, 817–824.
  • Radha, J., Srivastava, S., Solomon, S., Shrivastava, A. K., & Chandra, A. (2010). Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.). Acta Physiologiae Plantarum, 32, 979–986.
  • Rohan, D., Mayank, V., João, P., & Paul, M. S. (2013). Spatial distribution of heavy metals in soil and flora associated with the glass industry in North Central India: Implications for phytoremediation. Soil and Sediment Contamination: An International Journal, 22, 1–20.
  • Sagardoy, R., Vazquez, S., Florez-Sarasa, I. D., Albacete, A., Ribas-Carbo, M., Flexas, J., … Morales, F. (2010). Stomatal and mesophyll conductances to CO2 are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc. New Phytologist, 187, 145–158.10.1111/j.1469-8137.2010.03241.x
  • Saydut, A., Duz, M. Z., Kaya, C., Kafadar, A. B., & Hamamci, C. (2008). Transesterified (Sesamum indicum L.) seed oil as a biodiesel fuel. Bioresource Technology, 99, 6656–6660.10.1016/j.biortech.2007.11.063
  • Sharma, S., Singh, B., & Manchanda, V. K. (2014). Phytoremediation: Role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environmental Science and Pollution Research, 22, 946–962.
  • Singh, R. P., & Agrawal, M. (2010). Biochemical and physiological responses of rice (Oryza sativa L.) grown on different sewage sludge amendments rates. Bulletin of Environmental Contamination and Toxicology, 84, 606–612.10.1007/s00128-010-0007-z
  • Subhashini, V., Swamy, A. V. V. S., & Hema Krishna, R. (2013). Pot experiment: To study the uptake of Zinc by different plant species in artificially contaminated soil. World Journal of Environmental Engineering, 1, 27–33.
  • Sveta, T., Lakhveer, S., Zularisam, A. W., Muhammad, F. S., Samson, M. A., & Mohd, F. M. D. (2016). Plant-driven removal of heavy metals from soil: Uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environmental Monitoring and Assessment, 188, 206.
  • Talebi, S., Nabavi, K. S. M., & Sohani, D. A. L. (2014). The study effects of heavy metals on germination characteristics and proline content of Triticale (Triticoseale Wittmack). International Journal of Farming and Allied Sciences, 3, 1080–1087.
  • Varun, M., Ogunkunle, C. O., D’Souza, R., Favas, P., & Paul, M. (2017). Identification of Sesbania sesban (L.) Merr. as an efficient and well adapted phytoremediation tool for Cd polluted soils. Bulletin of Environmental Contamination and Toxicology. doi:10.1007/s00128-017-2094-6
  • Vassilev, A., Perez-Sanz, A., Cuypers, A., & Vangronsveld, J. (2007). Tolerance of two hydroponically grown Salix genotypes to excess Zn. J Plant Nutr, 30, 1472–1482.
  • Vymazal, J. (2016). Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants. Science of the Total Environment, 544, 495–498.10.1016/j.scitotenv.2015.12.011
  • Xiuli, H., Safyih, T., Pin, X., Marc, J. O., Hend, A. A., Christopher, R., & Gehong, W. (2013). Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis. International Journal of Phytoremediation. doi:10.1080/15226514.2013.773273
  • Zaidi, A., Wani, P. A., & Khan, M. S. (2012). Toxicity of heavy metals to legumes and bioremediation. Dordrecht: Springer. doi:10.1007/978-3-7091-0730-0