5,941
Views
51
CrossRef citations to date
0
Altmetric
Original Articles

Accumulation and distribution of lead (Pb) in plant tissues of guar (Cyamopsis tetragonoloba L.) and sesame (Sesamum indicum L.): profitable phytoremediation with biofuel crops

, , , &
Pages 51-60 | Received 21 Sep 2017, Accepted 20 Jan 2018, Published online: 20 Mar 2018

References

  • Abidi, N., Liyanage, S., Auld, D., Imel, R.K., Norman, L., Grover, K., … Trostle, C. (2015). Challenges and opportunities for increasing guar production in the United States to support unconventional oil and gas production. In Hydraulic fracturing impacts and technologies (pp. 207–226). Boca Raton, FL: CRC Press.10.1201/b18581
  • Adriano, D.C. (2001). Trace elements in terrestrial environments: Biogeochemistry, bioavailability, and risks of metals (2nd ed.). New York, NY: Springer.10.1007/978-0-387-21510-5
  • Ahmad, M., Ullah, K., Khan, M.A., Ali, S., Zafar, M., & Sultana, S. (2011). Quantitative and qualitative analysis of sesame oil biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33, 1239–1249.10.1080/15567036.2010.531510
  • Amel, S.B., Nabil, M., Nadia, A., Hocine, G., Hakim, L., & Nadjib, D. (2016). Phytoremediation of soil contaminated with Zn using Canola (Brassica napus L.). Ecological Engineering, 95, 43–49.
  • Anjum, N.A., Umar, S., & Iqbal, M. (2014). Assessment of cadmium accumulation, toxicity, and tolerance in Brassicaceae and Fabaceae plants – Implications for phytoremediation. Environmental Science and Pollution Research, 21, 10286–10293.10.1007/s11356-014-2889-5
  • Arias, J.A., Peralta-Videa, J.R., Ellzey, J.T., Ren, M., Viveros, M.N., & Gardea-Torresdey, J.L. (2010). Effects of Glomus deserticola inoculation on Prosopis: Enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Environmental and Experimental Botany, 68(2), 139–148.10.1016/j.envexpbot.2009.08.009
  • Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts: Polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1–15.10.1104/pp.24.1.1
  • Ashraf, M.Y., Akhtar, K., Sarwar, G., & Ashraf, M. (2002). Evaluation of arid and semi-arid ecotypes of guar (Cyamopsis tetragonoloba L.) for salinity (NaCl) tolerance. Journal of Arid Environments, 52, 473–482.10.1006/jare.2002.1017
  • Audet, P., & Charest, C. (2007). Heavy metal phytoremediation from a meta-analytical perspective. Environmental Pollution, 147, 231–237.10.1016/j.envpol.2006.08.011
  • Bashmakov, D.I., Lukatkin, A.S., Anjum, N.A., Ahmad, I., & Pereira, E. (2015). Evaluation of zinc accumulation, allocation, and tolerance in Zea mays L. seedlings: Implication for zinc phytoextraction. Environmental Science and Pollution Research, 22(20), 15443–15448.
  • Bertrand, P., Muhammad, S., Camille, D., Peter, W., & Eric, P. (2011). Lead uptake, toxicity, and detoxification in plants. Reviews of Environmental Contamination and Toxicology, 213, 113–136.
  • Cecchi, M., Dumat, C., Alric, A., Felix-Faure, B., Pradere, P., & Guiresse, M. (2008). Multi-metal contamination of a calcic cambisol by fallout from a lead-recycling plant. Geoderma, 144(1–2), 287–298.10.1016/j.geoderma.2007.11.023
  • Chen, L., Long, X.H., Zhang, Z.H., Zheng, X.T., Rengel, Z., & Liu, Z.P. (2011). Cadmium accumulation and translocation in two Jerusalem artichoke (Helianthus tuberosus L.) cultivars. Pedosphere, 21, 573–580.10.1016/S1002-0160(11)60159-8
  • D’Souza, R., Varun, M., Pratas, J., & Paul, M.S. (2013). Spatial distribution of heavy metals in soil and flora associated with the glass industry in North Central India: Implications for phytoremediation. Soil and Sediment Contamination: An International Journal, 22, 1–20.10.1080/15320383.2012.697936
  • Dede, G., Ozdemir, S., & Dede, O.H. (2012). Effect of soil amendments on phytoextraction potential of Brassica juncea growing on sewage sludge. International Journal of Environmental Science and Technology, 9, 559–564.10.1007/s13762-012-0058-2
  • Deepak, M., Sheweta, B., & Bhupendar, S.K. (2014). Guar gum: Processing, properties and food applications—A review. Journal of Food Science and Technology, 51, 409–418.
  • Elleuch, M., Besbes, S., Roiseux, O., Blecker, C., & Attia, H. (2007). Quality characteristics of sesame seeds and by products. Food Chemistry, 103, 641–650.10.1016/j.foodchem.2006.09.008
  • Fanrong, Z., Shafaqat, A., Haitao, Z., Younan, O., Boyin, Q., Feibo, W., & Guoping, Z. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159, 84–91.
  • Fitz, W.J., & Wenzel, W.W. (2002). Arsenic transformations in the soil–rhizosphere–plant system: Fundamentals and potential application to phytoremediation. Journal of Biotechnology, 99, 259–278.10.1016/S0168-1656(02)00218-3
  • Ginneken, L. V., Meers, E., Guisson, R., Ruttens, A., Elst, K., Tack, F.M.G., … Dejonghe, W. (2007). Phytoremediation for heavy metal contaminated soils combined with energy production. Journal of Environmental Engineering and Landscape Management , 15, 227–236.
  • Gopal, R., & Rizvi, A.H. (2008). Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere, 70(9), 1539–1544.10.1016/j.chemosphere.2007.08.043
  • Gupta D, Huang H, Yang X, Razafindrabe B, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. Journal of Hazardous Materials 177(1-3): 437–444.10.1016/j.jhazmat.2009.12.052
  • Hanen, Z., Tahar, G., Abelbasset, L., Rawdha, B., Rim, G., Majda, M., … Chedly, A. (2010). Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: Tolerance and accumulation. Journal of Hazardous Materials, 183, 609–615.
  • Kopittke, P.M., Asher, C.J., Kopittke, R.A., & Menzies, N.W. (2007). Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata). Environmental Pollution, 150(2), 280–287.10.1016/j.envpol.2007.01.011
  • Kopittke, P.M., Asher, C.J., Kopittke, R. A., & Menzies, N.W. (2008). Prediction of Pb speciation in concentrated and dilute nutrient solutions. Environmental Pollution, 153(3), 548–554.10.1016/j.envpol.2007.09.012
  • Lone, M.I., He, Z.L., Stoffella, P.J., & Xe, Yang (2008). Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. Journal of Zhejiang University Science B, 9, 210–220.10.1631/jzus.B0710633
  • Maestri, E., Marmiroli, M., Visioli, G., & Marmiroli, N. (2010). Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Environmental and Experimental Botany, 68(1), 1–13.10.1016/j.envexpbot.2009.10.011
  • Mahmood, T. (2010). Phytoextraction of heavy metals: The process and scope for remediation of contaminated soils. Soil Environ., 29, 91–109.
  • Mendez, M.O., & Maier, R.M. (2008). Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environment Health Perspective, 116, 278–283.
  • Monni, S., Salemaa, M., & Millar, N. (2000). The tolerance of Empetrum nigrum to copper and nickel. Environmental Pollution, 109, 221–229.10.1016/S0269-7491(99)00264-X
  • Nagajyoti, P.C., Lee, K.D., & Sreekanth, T.V.M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8, 199–216.10.1007/s10311-010-0297-8
  • Oh, K., Li, T., Cheng, H.Y., Xie, Y., & Yonemochi, S. (2013). Development of profitable phytoremediation of contaminated soils with biofuel crops. Journal of Environmental Protection, 4, 58–64.10.4236/jep.2013.44A008
  • Olaniran, A.O., Balgobind, A., & Pillay, B. (2013). Bioavailability of heavy metals in soil: Impact on microbial biodegradation of organic compounds and possible improvement strategies. International Journal of Molecular Sciences, 14, 10197–10228.10.3390/ijms140510197
  • Pais, I., & Jones, J.B. (2000). The handbook of trace elements (p. 223). Boca Raton, FL: Saint Lucie Press.
  • Pourakbar, L., Khayami, M., Khara, J., & Farbidina, T. (2007). Physiological effects of copper on some biochemical parameters in Zea mays L. seedlings. Pakistan Journal of Biological Sciences, 10, 4092–4096.
  • Punamiya, P., Datta, R., Sarkar, D., Barber, S., Patel, M., & Das, P. (2010). Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. Journal of Hazardous Materials, 177(1-3), 465–474.10.1016/j.jhazmat.2009.12.056
  • Rachit, K., Verma, K.S., Meena, T., Yashveer, V., & Shreya, H. (2016). Phytoextraction and bioconcentration of heavy metals by Spinacia oleracea grown in paper mill effluent irrigated soil. Nature Environment and Pollution Technology, 15, 817–824.
  • Rosselli, W., Keller, C., & Boschi, K. (2003). Phytoextraction capacity of trees growing on metal contaminated soil. Plant Soil, 256, 265–272.10.1023/A:1026100707797
  • Saydut, A., Duz, M.Z., Kaya, C., Kafadar, A.B., & Hamamci, C. (2008). Transesterified sesame (Sesamum indicum L.) seed oil as a biodiesel fuel. Bioresource Technology, 99, 6656–6660.10.1016/j.biortech.2007.11.063
  • Sengar, R.S., Gautam, M., Sengar, R.S., Sengar, R.S., Garg, S.K., Sengar, K., & Chaudhary, R. (2009). Lead stress effects on physiobiochemical activities of higher plants. Reviews of Environmental Contamination and Toxicology, 196, 1–21.
  • Shahid, M., Pinelli, E., Pourrut, B., Silvestre, J., & Dumat, C. (2011). Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicology and Environmental Safety, 74(1), 78–84.10.1016/j.ecoenv.2010.08.037
  • Sharma, S., Singh, B., & Manchanda, V.K. (2014). Phytoremediation: Role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environmental Science and Pollution Research, 22, 946–962.
  • Srinivasan, M., Sahi, S.V., Paulo, J.C.F., & Venkatachalam P. (2014). Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Botanical Studies, 55, 54.
  • Stanisław W., & Gawronski, H.G. (2007). Plant taxonomy for phytoremediation. Advanced Science and Technology for Biological Decontamination of Sites Affected by Chemical and Radiological Nuclear Agents, 79–88.
  • Talebi, S., Nabavi, K.S.M., & Sohani, D.A.L. (2014). The study effects of heavy metals on germination characteristics and proline content of Triticale (Triticoseale Wittmack). International Journal of Farming and Allied Sciences, 3, 1080–1087.
  • Tian, S., Lu, L., Yang, X., Webb, S. M., Du, Y., & Brown, P.H. (2010). Spatial imaging and speciation of lead in the accumulator plant Sedum alfredii by microscopically focused synchrotron X-ray investigation. Environmental Science & Technology, 44, 5920–5926.10.1021/es903921t
  • Uzu, G., Sobanska, S., Aliouane, Y., Pradere, P., & Dumat, C. (2009). Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environmental Pollution, 157(4), 1178–1185.10.1016/j.envpol.2008.09.053
  • Vega, F., Andrade, M., & Covelo, E. (2010). Influence of soil properties on the sorption and retention of cadmium, copper and lead, separately and together, by 20 soil horizons: Comparison of linear regression and tree regression analyses. Journal of Hazardous Materials, 174(1-3), 522–533.10.1016/j.jhazmat.2009.09.083
  • Hao, X., Taghavi, S., Xie, P., Orbach, M.J., Alwathnani, H.A., Rensing, C., & Wei, G. (2014). Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis. International Journal of Phytoremediation, 16(2), 179–202.doi:10.1080/15226514.2013.773273
  • Zheng, L.J., Liu, X.M., Lütz-Meindl, U., & Peer, T. (2011). Effects of lead and EDTA-assisted lead on biomass, lead uptake and mineral nutrients in Lespedeza chinensis and Lespedeza davidii. Water, Air, & Soil Pollution, 220, 57–68.