1,572
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Seasonal variation of soil enzyme activities in relation to nutrient and carbon cycling in Senna alata (L.) Roxb invaded sites of Puducherry region, India

, &
Pages 155-168 | Received 27 Sep 2017, Accepted 03 Mar 2018, Published online: 09 Apr 2018

References

  • Ajwa, H.A., & Tabatabai, M.A. (1994). Decomposition of different organic materials in soils. Biology and Fertility of Soils, 18(3), 175–182.10.1007/BF00647664
  • Bashour, I., & Sayegh, A.H. (2007). Methods of analysis for soils of arid and semi-arid regions. Rome: Published by food and agricultural organization of United Nations.
  • Błońska, E. (2010). Seasonal changeability of enzymatic activity in soils of selected forest sites. Acta Scientiarum PolonorumSilvarum, Colendarum Ratio et IndistriaLignaria, 9(3–4), 5–15.
  • Caldwell, B.A. (2006). Effects of invasive scotch broom on soil properties in a Pacific coastal prairie soil. Applied Soil Ecology, 32(1), 149–152.10.1016/j.apsoil.2004.11.008
  • Caldwell, B.A., Griffiths, R.P., & Sollins, P. (1999). Soil enzyme response to vegetation disturbance in two lowland Costa Rican soils. Soil Biology and Biochemistry, 31(12), 1603–1608.10.1016/S0038-0717(99)00067-X
  • Corbin, J.D., & D’antonio, C.M. (2011). Abundance and productivity mediate invader effects on nitrogen dynamics in a California grassland. 2(3), 1–20.
  • Dassonville, N., Vanderhoeven, S., Vanparys, V., Hayez, M., Gruber, W., & Meerts, P. (2008). Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe. Oecologia, 157(1), 131–140.10.1007/s00442-008-1054-6
  • Dormaar, J. F., Johnston, A., & Smoliak, S. (1984). Seasonal changes in carbon content, and dehydrogenase, phosphatase, and urease activities in mixed prairie and fescue grassland Ah horizons. Journal of Range Management, 31–35.10.2307/3898819
  • Ehrenfeld, J.G. (2003). Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems, 6, 503–523.10.1007/s10021-002-0151-3
  • Eivazi, F., & Tabatabai, M.A. (1988). Glucosidases and galactosidases in soils. Soil Biology and Biochemistry, 20(5), 601–606.10.1016/0038-0717(88)90141-1
  • Fioretto, A., Papa, S., Curcio, E., Sorrentino, G., & Fuggi, A. (2000). Enzyme dynamics on decomposing leaf litter of Cistusincanus and Myrtuscommunis in a Mediterranean ecosystem. Soil Biology and Biochemistry, 32(13), 1847–1855.10.1016/S0038-0717(00)00158-9
  • Gibbons, S.M., Lekberg, Y., Mummey, D.L., Sangwan, N., Ramsey, P.W., & Gilbert, J.A. (2017). Invasive plants rapidly reshape soil properties in a grassland ecosystem. mSystems, 2(2), e00178–16.
  • Grierson, P.F., & Adams, M.A. (2000). Plant species affect acid phosphatase, ergosterol and microbial P in a Jarrah (Eucalyptus marginata Donn ex Sm.) forest in south-western Australia. Soil Biology and Biochemistry, 32(13), 1817–1827.10.1016/S0038-0717(00)00155-3
  • Hernández, D.L., & Hobbie, S.E. (2010). The effects of substrate composition, quantity, and diversity of microbial activity. Plant and Soil, 335(1–2), 397–411.10.1007/s11104-010-0428-9
  • Hesse, P.R. (1971). A textbook of soil chemical analysis. London: John Murray.
  • Khadka, A. (2017). Assessment of the perceived effects and management challenges of Mikania micrantha invasion in Chitwan National Park buffer zone community forest, Nepal. Heliyon, 3(4), e00289.10.1016/j.heliyon.2017.e00289
  • Kourtev, P.S., Ehrenfeld, J.G., & Häggblom, M. (2003). Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biology and Biochemistry, 35(7), 895–905.10.1016/S0038-0717(03)00120-2
  • Krämer, S., & Green, D.M. (2000). Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biology and Biochemistry, 32(2), 179–188.10.1016/S0038-0717(99)00140-6
  • Li, W.H., Zhang, C., Jiang, H.B., Xin, G.R., & Yang, Z.Y. (2006). Changes in soil microbial community associated with invasion of the exotic weed, Mikaniamicrantha HB K. Plant, and Soil, 281(1–2), 309–324.10.1007/s11104-005-9641-3
  • Liao, C., Peng, R., Luo, Y., Zhou, X., Wu, X., Fang, C., … Li, B. (2008). Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta-analysis. New Phytologist, 177(3), 706–714.10.1111/nph.2008.177.issue-3
  • Liu, N., Charrua, A.B., Weng, C.H., Yuan, X., & Ding, F. (2015). Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study. Bioresource Technology, 198, 55–62.10.1016/j.biortech.2015.08.129
  • Marcelino, V.R., & Verbruggen, H. (2015). Ecological niche models of invasive seaweeds. Journal of Phycology, 51(4), 606–620.10.1111/jpy.12322
  • Margesin, R., & Schinner, F. (2005). Manual for soil analysis -monitoring and assessing soil bioremediation. Berlin: Springer-Verlag Publication.
  • Martinez, C.E., & Tabatabai, M.A. (1997). Decomposition of biotechnology by-products in soils. Journal of Environment Quality, 26(3), 625–632.10.2134/jeq1997.00472425002600030006x
  • Moraghebi, F.1, Matinizadeh, M., Khanjani, S.B., Teimouri, M., & Afdideh, F. (2012). Seasonal variation of urease and alkaline phosphatase activity in natural and artificial habitats of hazel. Journal of Medicinal Plants Research, 6(14), 2714–2720.
  • Olsen, S.R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington, DC: United States Department Of Agriculture.
  • Piper, C.S. (1966). Soil and plant analysis; A laboratory manual of methods for the examination of soils and the determination of the inorganic constituents of plants. Bombay: Hans Publications.
  • Powell, K.I., Chase, J.M., & Knight, T.M. (2011). A synthesis of plant invasion effects on biodiversity across spatial scales. American Journal of Botany, 98(3), 539–548.10.3732/ajb.1000402
  • Quist, C.W., Vervoort, M.T., Van Megen, H., Gort, G., Bakker, J., Van der Putten, W. H., & Helder, J. (2014). Selective alteration of soil food web components by invasive giant goldenrod Solidagogigantea in two distinct habitat types. Oikos, 123(7), 837–845.10.1111/more.2014.123.issue-7
  • Richards, L.A. (1954). Diagnosis and improvement of saline and alkali soils (p. 160). Washington, DC: United States Salinity Laboratory. USDA. Agriculture Handbook, 60.
  • Rodrigues, I.M.C., Souza Filho, A.P.S., Ferreira, F.A., & Demuner, A.J. (2010). Chemical prospecting of compounds produced by Senna alata with allelopathic activity. Planta Daninha, 28(1), 1–12.
  • Rusterholz, H.P., Salamon, J.A., Ruckli, R., & Baur, B. (2014). Effects of the annual invasive plant Impatiens glandulifera on the Collembola and Acari communities in a deciduous forest. Pedobiologia, 57(4–6), 285–291.10.1016/j.pedobi.2014.07.001
  • Sanon, A., Beguiristain, T., Cebron, A., Berthelin, J., Ndoye, I., Leyval, C., … Duponnois, R. (2009). Changes in soil diversity and global activities following invasions of the exotic invasive plant, Amaranthus viridis L., decrease the growth of native sahelian Acacia species. FEMS Microbiology Ecology, 70(1), 118–131.10.1111/fem.2009.70.issue-1
  • Schinner, F., & von Mersi, W. (1990). Xylanase-, CM-cellulase- and invertase activity in soil: An improved method. Soil Biology & Biochemistry, 22, 511–515.10.1016/0038-0717(90)90187-5
  • Sedia, E.G., & Ehrenfeld, J.G. (2006). Differential effects of lichens and mosses on soil enzyme activity and litter decomposition. Biology and Fertility of Soils, 43(2), 177–189.10.1007/s00374-006-0077-6
  • Shao, X., Yang, W., & Wu, M. (2015). Seasonal dynamics of soil labile organic carbon and enzyme activities in relation to vegetation types in Hangzhou Bay tidal flat wetland. PloS One, 10(11), e0142677.10.1371/journal.pone.0142677
  • Sims, J.R., & Jackson, G.D. (1971). Rapid analysis of soil nitrate with chromotropic acid. Soil Science Society of America Journal, 35, 603–606.10.2136/sssaj1971.03615995003500040035x
  • Sinsabaugh, R.L., & Moorhead, D.L. (1994). Resource allocation to extracellular enzyme production: A model for nitrogen and phosphorus control of litter decomposition. Soil Biology and Biochemistry, 26(10), 1305–1311.10.1016/0038-0717(94)90211-9
  • Sinsabaugh, R.L., & Linkins, A.E. (1988). Adsorption of cellulase components by leaf litter. Soil Biology and Biochemistry, 20(6), 927–931.10.1016/0038-0717(88)90105-8
  • Sinsabaugh, R.L., Benfield, E.F., & Linkins, A.E. (1981). Cellulase activity associated with the decomposition of leaf litter in a woodland stream [Quercusalba, Acer rubrum, Cornusflorida, Virginia (USA)]. Oikos (Denmark).
  • Song, Y., Song, C., Yang, G., Miao, Y., Wang, J., & Guo, Y. (2012). Changes in labile organic carbon fractions and soil enzyme activities after marshland reclamation and restoration in the Sanjiang Plain in Northeast China. Environmental Management, 50(3), 418–426.10.1007/s00267-012-9890-x
  • Stefanowicz, A.M., Stanek, M., Nobis, M., & Zubek, S. (2016). Species-specific effects of plant invasions on activity, biomass, and composition of soil microbial communities. Biology and Fertility of Soils, 52(6), 841–852.10.1007/s00374-016-1122-8
  • Sun, X., Gao, C., & Guo, L. (2013). Changes in soil microbial community and enzyme activity along an exotic plant Eupatorium adenophoruminvasion in a Chinese secondary forest. Chinese Science Bulletin, 58(33), 4101–4108.10.1007/s11434-013-5955-3
  • Tabatabai, M.A., & Bremner, J.M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1, 301–307.10.1016/0038-0717(69)90012-1
  • Tabatabai, M.A. (1982). Soil enzymes. In A.L. Page, R.H. Miller, & D.R. Keeney (Eds.), Methods of soil analysis. Part I (pp. 903–947). Madison, WI: Agronomy 9.
  • Tabatabai, M.A., & Bremner, J.M. (1972). Assay of urease activity in soils. Soil Biology and Biochemistry, 4(4), 479–487.10.1016/0038-0717(72)90064-8
  • Tian, L., Dell, E., & Shi, W. (2010). The chemical composition of dissolved organic matter in agroecosystems: Correlations with soil enzyme activity and carbon and nitrogen mineralization. Applied Soil Ecology, 46(3), 426–435.10.1016/j.apsoil.2010.09.007
  • Tylianakis, J.M., Didham, R.K., Bascompte, J., & Wardle, D.A. (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11(12), 1351–1363.10.1111/ele.2008.11.issue-12
  • Uddin, M.N., & Robinson, R.W. (2017). Responses of plant species diversity and soil physical-chemical-microbial properties to Phragmites australis invasion along a density gradient. Scientific Reports, 7(1), 11007.10.1038/s41598-017-11205-0
  • Vilà, M., Espinar, J.L., Hejda, M., Hulme, P.E., Jarošík, V., Maron, J.L., … Pyšek, P. (2011). Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecology Letters, 14(7), 702–708.10.1111/ele.2011.14.issue-7
  • Waring, S. A., & Bremner, J. M. (1964). Ammonium production in soil under waterlogged conditions as an index of nitrogen availability. Nature, 201, 951–952.10.1038/201951a0
  • Weidenhamer, J.D., & Callaway, R.M. (2010). Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. Journal of Chemical Ecology, 36(1), 59–69.10.1007/s10886-009-9735-0