5,385
Views
21
CrossRef citations to date
0
Altmetric
Research Articles

Lithological mapping in Sangan region in Northeast Iran using ASTER satellite data and image processing methods

, , &
Pages 59-70 | Received 25 Apr 2018, Accepted 19 Feb 2019, Published online: 27 Feb 2019

References

  • Abdeen, M. M., Allison, T. K., Abdelsalam, M. G., & Stern, R. J. (2001). Application of ASTER band-ratio images for geological mapping in arid regions; the neoproterozoic Allaqi Suture, Egypt. Abstracts with Programs - Geological Society of America, 3, 289.
  • Abrams, M., Hook, S., & Ramachandran, B. (2004). ASTER Users Guide V2. NASA JPL. Accessed on 10 July 2015. https://asterweb.jpl.nasa.gov/content/03data/04_Documents/aster_user_guide_v2.pdf.
  • Bishop, C. M. (2006). Pattern recognition and machine learning (pp. 738). Singapore, Malaysia: Springer Science.
  • Chen, X., Warner, T. A., & Campagna, D. J. (2007). Integrating visible, near-infrared and shortwave infrared hyperspectral and multispectral thermal imagery for geological mapping at Cuprite, Nevada. Remote Sensing of Environment, 110, 344–356.
  • Cooley, T., Anderson, G. P., Felde, G. W., Hoke, M. L., Ratkowski, A. J., Chetwynd, J. H., … Bernstein, L. S. (2002). FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. Geoscience and Remote Sensing Symposium IEEE International, 3, 1414–1418.
  • Debba, P., Carranza, E. J. M., van der Meer, F. D., & Stein, A. (2006). Abundance estimation of spectrally similar minerals by using derivative spectra in simulated annealing. Geoscience and Remote Sensing, IEEE Transactions on, 44, 3649–3658.
  • Di Tommaso, I., & Rubinstein, N. (2007). Hydrothermal alteration mapping using ASTER data in the infiernillo porphyry deposit, Argentina. Ore Geology Reviews, 32, 275–290.
  • Fauvelet, E., & Eftekhar-Nezhad, J. (1990). Explanatory text of the taybad quadrangle map1:250000, Geological Survey of Iran, Tehran, Iran.
  • Golmohammadi, A., Karimpour, M. H., Malekzadeh Shafaroudi, A., & Mazaheri, S. A. (2014). Alteration-mineralization, and radiometric ages of the source pluton at the sangan iron skarn deposit, northeastern Iran. Ore Geology Reviews, 65(2), 545–563.
  • Hecker, C., Van der Meijde, M., Van der Werff, H., & Van der Meer, F. D. (2008). Assessing the influence of reference spectra on synthetic SAM classification results,” IEEE trans. Geosci. Remote Sens., 46(12), 4162–4172.
  • Hewson, R. D., Robson, D., Carlton, A., & Gilmore, P. (2017). Geological application of ASTER remote sensing within sparsely outcropping terrain, Central New South Wales, Australia. Cogent Geoscience, 3, 1319259.
  • Hunt, G. (1977). Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, 42, 501–513.
  • Ibrahim, W. S., Watanabe, K., & Yonezo, K. (2016). Structural and litho-tectonic controls on neoproterozoic base metal sulfide and gold mineralization in North Hamisana shear zone, South Eastern Desert, Egypt: The integrated field, structural, landsat 7 ETM+and ASTER data approach. Journal of Ore Geology Reviews, 79, 62–77.
  • Iwasaki, A., & Tonooka, H. (2005). Validation of a crosstalk correction algorithm for ASTER/SWIR. IEEE Transactions on Geoscience and Remote Sensing, 43(12), 2747–2751.
  • Kruse, F. A., Lefkoff, A. B., Boardman, J. B., Heidebrecht, K. B., Shapiro, A. T., Barloon, P. J., & Goetz, A. F. H. (1993). The Spectral Image Processing System (SIPS)-interactive visualization and analysis of imaging spectrometer data, remote sens. Environtal, 44, 145–163.
  • Liu, L., Zhou, J., Jiang, D., Zhuang, D., & Mansaray, L. (2014). Lithological discrimination of the mafic-ultramafic complex, Huitongshan, Beishan, China: Using ASTER data. Journal of Earth Science, 25, 529–536.
  • Madani, A., & Emam, A. A. (2009). SWIR ASTER band ratios for lithological mapping and mineral exploration: A case study from El Hudi area, southeastern desert, Egypt. Arabian Journal of Geosciences, 4, 45–52.
  • Malekzadeh Shafaroudi, A., Karimpour, M. H., & Golmohammadi, A. (2013). Zircon U–Pb geochronology and petrology of intrusive rocks in the C-North and Baghak districts, Sangan iron mine, NE Iran. Journal of Asian Earth Sciences, 64, 256–271.
  • Mantero, P., Moser, G., & Serpico, S. B. (2005). Partially supervised classification of remote sensing imges through SVM-based probability density estimation. IEEE Transactions on Geoscience and Remote Sensing, 43(3), 559–570.
  • Mars, J. C., & Rowan, L. C. (2011). ASTER spectral analysis and lithologic mapping of the Khanneshin carbonate volcano, Afghanistan. Geosphere, 7, 276–289.
  • Masoumi, F., Eslamkish, T., Abkar, A. A., Honarmand, M., & Harris, J. (2017). Integration of spectral, thermal, and textural features o f ASTER data using random forests classification for lithological mapping. Journal of African Earth Science, 129, 445–457.
  • Mazhari, N., Malekzadeh Shafaroudi, A., & Ghaderi, M. (2017). Detecting and mapping different types of iron mineralization in Sangan mining region, NE Iran, using satellite image and airborne geophysical data. Geosciences Journal, 21(1), 137–148.
  • Murphy, R. J., Monteiro, S. T., & Schneider, S. (2012). Evaluating classification techniques for mapping vertical geology using field-based hyperspectral sensors. IEEE trans. Geoscience and Remote Sensing, 50, 3066–3080.
  • Othman, A. A., & Gloagen, R. (2014). Improving lithological mapping by SVM classification of spectral and morphological features: The discovery of a new chromite body in the Mawat ophiHolite complex (Kurdistan, NE Iraq). Remote Sensing, 6(8), 6867–6896.
  • Patel, N., & Kaushal, B. (2011). Classification of features selected through Optimum Index Factor (OIF) for improving classification accuracy. Journal of Forestry Research, 22, 99–105.
  • Pour, A. B., Hashim, M., Park, Y., & Hong, J. K. (2017a). Mapping alteration mineral zones and lithological units in Antarctic regions using spectral bands of ASTER remote sensing data. Geocarto International. doi:10.1080/10106049.2017.1347207
  • Pour, A. B., Hashim, M., Park, Y., & Hong, J. K. (2017b). Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data: North-eastern Graham Land, Antarctic Peninsula. Ore Geology Reviews. doi:10.1016/j.oregeorev.2017.07.018
  • Pour, A. B., & Hashim, M. (2015). Structural mapping using PALSAR data in the central gold belt peninsular Malaysia. Ore Geology Reviews, 64, 13–22.
  • Pour, A. B., Hashim, M., Hong, J. K., & Park, Y. (2017). Lithological and alteration mineral mapping in poorly exposed lithologies using landsat-8 and ASTER satellite data: North-eastern Graham Land, Antarctic Peninsula. Journal of Ore Geology Reviews. doi:10.1016/j.oregeorev.2017.07.018
  • Pour, B., Hashim, M., & Marghany, M. (2011). Using spectral mapping techniques on short wave infrared bands of ASTER remote sensing data for alteration mineral mapping in SE Iran. International Journal of the Physical Sciences, 6, 917–929.
  • Rajendran, S., Thirunavukkarasu, A., Balamurugan, G., & Shankar, K. (2012). Discrimination of iron ore deposits of granulite terrain of Southern Peninsular India using ASTER data. Journal of Asian Earth Sciences, 41, 99–106.
  • Rezaei, A., Hassani, H., Moarefavand, P., & Golmohammadi, A. (2019). Determination of unstable tectonic zones in C–North deposit, Sangan, NE Iran using GPR method: Importance of structural geology. Journal of Mining and Environment, 10(1), 177–195.
  • Rowan, L. C., Crowley, J. K., Schmidt, R. G., & Mars, J. C. (2000). Mapping hydrothermally altered rocks by analyzing hyperspectral image (AVIRIS) data of forested areas in the Southeastern United States. Journal of Geochemical Exploration, 68(3), 145–166.
  • Safari, M., Maghsodi, A., & Pour, A. B. (2017). Application of landsat-8 and ASTER satellite remote sensing data for porphyry copper exploration: A case study from Shahr-e Babak, Kerman, south of Iran. Geocarto International. doi:10.1080/10106049.2017.1334834
  • Sahoo, S., & Jha, M. K. (2016). Pattern recognition in lithology classification: Modeling using neural networks, self-organizing maps and genetic algorithms. Hydrogeology Journal, 25, 311–330.
  • Sepidbar, F., Mirnejad, H., & Mi, C. (2018). Mineral chemistry and Ti in zircon thermometry: Insights into magmatic evolution of the Sangan igneous rocks, NE Iran. Journal of Chemie Der Erde.
  • Smirnoff, A., Boisvert, E., & Paradis, S. J. (2008). Support vector machine for 3D modeling from sparse geological information of various origins. Computers & Geosciences, 34, 127–143.
  • Van Ruitenbeek, F. J. A., Cudahy, T. J., Van der Meer, F. D., & Hale, M. (2012). Characterization of the hydrothermal systems associated with archean VMS- mineralization at Panorama, Western Australia, using hyperspectral, geochemical and geothermometric data. Ore Geology Reviews, 45, 33–46.
  • Vapnik, V. (1979). Estimation of dependences based on empirical data (pp. 5165–5184). Moscow: Nauka. 27 (in Russian) (English translation: Springer Verlag, New York, 1982).
  • Wolters, J. M., Goldin, L., Watts, D. R., & Harris, N. B. W. (2005). Remote sensing of gneiss and granite in southern Tibet. Abstracts with programs. Geological Society of America, 37, 93.