2,616
Views
37
CrossRef citations to date
0
Altmetric
Research Articles

Event-based landslide susceptibility mapping using weights of evidence (WoE) and modified frequency ratio (MFR) model: a case study of Rangamati district in Bangladesh

, , & ORCID Icon
Pages 222-235 | Received 28 Dec 2018, Accepted 11 May 2019, Published online: 22 May 2019

References

  • Agterberg, F. P., Bonham-Carter, G. F., & Wright, D. F. (1990). Statistical pattern integration for mineral exploration. In D. F. Gaal & G. Merriam (Eds.), Computer application in resource estimation: Prediction and assessment for metals and petroleum (pp. 1–21). Pergamon Press: Oxford.
  • Ahmed, B. (2015). Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan. Journal of the International Consortium on Landslides, Springer Link, 12(2015), 1077–1095.
  • Ahmed, B., & Dewan, A. (2017). Application of bivariate and multivariate statistical techniques in landslide susceptibility modeling in Chittagong city corporation, Bangladesh, Remote Sensing, 9, 304, (May 2014).
  • Althuwaynee, O. F., Pradhan, B., & Lee, S. (2016). A novel integrated model for assessing landslide susceptibility mapping using CHAID and AHP pair-wise comparison. International Journal of Remote Sensing, 37(5), 1190–1209.
  • Bathrellos, G. D., Kalivas, D. P., & Skilodimou, H. D. (2009). GIS-based landslide susceptibility mapping models applied to natural and urban planning in Trikala, Central Greece. Estudios Geológicos, 65(1), 49–65.
  • Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists, modeling with GIS, 302–334. Oxford: Pergamon Press.
  • Bonham-Carter, G. F., Agterberg, F. P., & Wright, D. F. (1989). Weights of evidence modelling: A new approach to mapping mineral potential. Statistical Applications in Earth Science, 89(9), 171–183.
  • Casu, F., Manconi, A., Pepe, A., & Lanari, R. (2011). Deformation time-series generation in areas characterized by large displacement dynamics: The SAR amplitude pixel-offset SBAS technique. IEEE Transactions on Geoscience and Remote Sensing, 49(7), 2752–2763.
  • Chen, L., van Westen, C. J., Hussin, H., Ciurean, R. L., Turkington, T., Chavarro-Rincon, D., & Shrestha, D. P. (2016). Integrating expert opinion with modelling for quantitative multi-hazard risk assessment in the Eastern Italian Alps. Geomorphology, 273(October), 150–167.
  • Chung, C.-J. F., & Fabbri, A. G. (1999). Probabilistic prediction models for Landslide Hazard mapping. Photogrammetric Engineering & Remote Sensing, 65(12), 1389–1399.
  • Cleary, P. W., Prakash, M., & Rothauge, K. (2010). Combining digital terrain and surface textures with large-scale particle-based computational models to predict dam collapse and landslide events. International Journal of Image and Data Fusion, 1(4), 337–357.
  • Deng, X., Li, L., & Tan, Y. (2017). Validation of spatial prediction models for landslide susceptibility mapping by considering structural similarity. ISPRS International Journal of Geo-Information, 6(4), 103.
  • Fialko, Y., Sandwell, D., Simons, M., & Rosen, P. (2005). Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit. Nature, 435(7040), 295–299.
  • Geological Survey of Bangladesh. (2001). Description of map units. Geological Survey of Bangladesh (GSB)
  • Haque, D. M. E., Sifa, S. F., Mahmud, T. & Tarin, M. A. (2018). Landslide susceptibility assessment based on satellite image processing and bi-variate statistical modeling for Rangamati district, Bangladesh. Journal of Physics, 93–106. doi:10.13140/RG.2.2.16092.03203
  • Horelli, J. A. (2005). Landslides in Hong Kong. University of Helsinki.
  • Intarawichian, N., & Dasananda, S. (2010). Analytical hierarchy process for landslide susceptibility mapping in lower Mae Chaem Watershed, Northern Thailand. Suranaree Journal of Science and Technology, 7(3). Retrieved from http://www.thaiscience.info/journals/Article/SJST/10890515.pdf
  • Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water Resources Research, 36(7), 1897–1910.
  • Jebur, M. N., Pradhan, B., Shafri, H. Z. M., Yusoff, Z. M., & Tehrany, M. S. (2015). An integrated user-friendly ArcMAP tool for bivariate statistical modelling in geoscience applications. Geoscientific Model Development, 8(3), 881–891.
  • Kanungo, D. P., Arora, M. K., Sarkar, S., & Gupta, R. P. (2009). Landslide susceptibility zonation (LSZ) mapping - a review. Journal of South Asia Disaster Studies, 2(1), 81–106.
  • Lee, S., & Choi, J. (2004). Landslide susceptibility mapping using GIS and the weight-of-evidence model. International Journal of Geographical Information Science, 18(8), 789–814.
  • Lee, S., & Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4, 33–41.
  • Lee, S., & Talib, J. A. (2005). Probabilistic landslide susceptibility and factor effect analysis. Environmental Geology, 47(7), 982–990.
  • Li, L., Lan, H., Guo, C., Zhang, Y., Li, Q., & Wu, Y. (2016). A modified frequency ratio method for landslide susceptibility assessment. Landslides, 14(2), 727–741.
  • Lu, J. (2016, August). Sentinel-1 Toolbox offset tracking tutorial. ESA
  • Mohammady, M., Pourghasemi, H. R., & Pradhan, B. (2012). Landslide susceptibility mapping at Golestan Province, Iran: A comparison between frequency ratio, Dempster-Shafer, and weights-of-evidence models. Journal of Asian Earth Sciences, 61, 221–236.
  • Montgomery, D. R., & Dietrich, W. E. (1994). A physically based model for the topographic control on shallow landsliding. Water Resources Research, 30(4), 1153–1171.
  • Neuhäuser, B. (2014). Landslide susceptibility and climate change scenarios in flysch areas of the Eastern alps.Geomorphology, 86(1-2), 12–24
  • Özşahin, E. (2014). Using geographic information system and analytical hierarchy process in landslide susceptibility analysis in Tekirdağ province. The Central and Eastern European Online Library, 137–144. doi:10.7366/1509499516305
  • Pathier, E., Fielding, E. J., Wright, T. J., Walker, R., Parsons, B. E., & Hensley, S. (2006). Displacement field and slip distribution of the 2005 Kashmir earthquake from SAR imagery. Geophysical Research Letters, 33(20), 1–5.
  • Pradhan, B. (2010). Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of Remote Sensing, 38(2), 301–320.
  • Sarwar, M. G. M. (2008). Landslide tragedy of Bangladesh. In The first world landslide forum. Tokyo. Retrieved from http://www.academia.edu/3588839/Landslide_Tragedy_of_Bangladesh
  • Sun, L., & Muller, J. P. (2016). Evaluation of the use of sub-pixel offset tracking techniques to monitor landslides in densely vegetated steeply sloped areas. Remote Sensing, 8(8), 659.
  • UN RC. (2017). Bangladesh: HCTT response plan (June-December 2017) - Bangladesh | ReliefWeb. Retrieved from https://reliefweb.int/report/bangladesh/bangladesh-hctt-response-plan-june-december-2017
  • Van Westen, C. J. (2000). The modelling of landslide hazards using gis (PDF download available). Surveys in Geophysics, 21, 241–255. Retrieved from https://www.researchgate.net/publication/233815072_The_Modelling_Of_Landslide_Hazards_Using_Gis
  • van Westen, C. J., Ghosh, S., Jaiswal, P., Martha, T. R., & Kuriakose, S. L. (2011). From landslide inventories to landslide risk assessment; an attempt to support methodological development in India. In the Second World Landslide Forum, 1, 3–20.
  • van Westen, C. J., Rengers, N., & Soeters, R. (2003). Use of geomorphological information in indirect landslide susceptibility assessment. Natural Hazards, 30, 399–419. Kluwer Academic Publishers. Retrieved from. https://research.utwente.nl/en/publications/use-of-geomorphological-information-in-indirect-landslide-suscept
  • van Westen, C. J., van Asch, T. W. J., & Soeters, R. (2005). Landslide hazard and risk zonation - Why is it still so difficult? Bulletin of Engineering Geology and the Environment, 65(2), 167–184.
  • Yilmaz, I. (2009). Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat-Turkey). Computers and Geosciences, 35(6), 1125–1138.
  • Yilmaz, I., & Yildirim, M. (2006). Structural and geomorphological aspects of the Kat landslides (Tokat-Turkey) and susceptibility mapping by means of GIS. Environmental Geology, 50(4), 461–472.
  • Zhou, G., Esaki, T., Mitani, Y., Xie, M., & Mori., J. (2003). Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach. Engineering Geology, 68(3–4), 373–386.