1,260
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Phytotoxic effects of soil contaminated with explosive residues of landmines on germination and growth of Vicia faba L

&
Pages 221-231 | Received 25 Nov 2020, Accepted 04 Jul 2021, Published online: 13 Jul 2021

References

  • Ali, A., Zinnert, J. C., Muthukumar, B., Peng, Y., Chung, S. M., & Stewart, C. N. (2014). Physiological and transcriptional responses of Baccharis halimifolia to the explosive Composition B (RDX/TNT) in amended soil. Environmental Science and Pollution Research, 21(13), 8261–8270. https://doi.org/10.1007/s11356-014-2764-4
  • Benavides, M. P., Gallego, S. M., & Tomaro, M. L. (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 21–34. https://doi.org/10.1590/S1677-04202005000100003
  • Berhe, A. A. (2007). The contribution of landmines to land degradation. Land Degradation & Development, 18(1), 1–15. https://doi.org/10.1002/ldr.754
  • Bernhoft, R. A. (2012). Mercury toxicity and treatment: A review of the literature. Journal of Environmental Public Health, 460-508. 460508, 10. http://dx.doi.org/10.1155/2012/460508
  • Best, E. P. H., Tatem, H. E., Geter, K. N., Wells, M. L., & Lane, B. K. (2008). Effects, uptake, and fate of 2,4,6-trinitrotoluene aged in soil in plants and worms. Environmental Toxicology and Chemistry, 27(12), 2539–2547. https://doi.org/10.1897/08-017.1
  • Bonifacio, R. S., & Montano, M. N. (1998). Inhibitory effects of mercury and cadmium on seed germination of Enhalus acoroides (L.f.) Royle. Bulletin of Environmental Contamination and Toxicology, 60(1), 45–51. https://doi.org/10.1007/s001289900589
  • Boutros-Ghali, B. (1994). The land mine crisis: A humanitarian disaster. Foreign Affairs, 73(5), 8. https://doi.org/10.2307/20046826
  • Bridges, C. C., & Zalups, R. K. (2017). Mechanisms involved in the transport of mercuric ions in target tissues. Archives of Toxicology, 91(1), 63–81.
  • Cargnelutti, D., Tabaldi, L. A., Spanevello, R. M., Jucoski, G. O., Battisti, V., Redin, M., Linares, C. E. B., Dressler, V. L., Flores, M. M., Nicoloso, F. T., Morsch, V. M., & Schetinger, M. R. C. (2006). Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere, 65(6), 999–1106. https://doi.org/10.1016/j.chemosphere.2006.03.037
  • Cavusoglu, K., Yalcin, E., & Ergene, A. (2010). The investigation of cytotoxic effects of refinery wastewater on root tip cells of Vicia faba L. Journal of Environmental Biology, 31, 465–470.
  • CCME (Canadian Council of Ministers of the Environment). (1999). Canadian soil quality guidelines for the protection of environmental and human health. Winnipeg
  • Chaoui, A., & El Ferjani, E. (2005). Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedlings. Comptes Rendus Biologies, 328(1), 23–31. https://doi.org/10.1016/j.crvi.2004.10.001
  • Chen, J., & Yang, Z. M. (2012). Mercury toxicity, molecular response and tolerance in higher plants. Biological Metals, 25 (5), 847–857. http://doi.org/10.1007/s10534-012-9560–8
  • Chen, X., Wang, J., Shi, Y., Zhao, M. Q., & Chi, G. Y. (2011). Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Botanica Studies, 52, 41–46.
  • Clemens, S., & Ma, J. F. (2016). Toxic heavy metal and metalloid accumulation in crop plants and foods. Annual Review of Plant , Biology 67(1), 489–512. https://doi.org/10.1146/annurev-arplant-043015-112301
  • Clemens, S., Palmgreen, M. G., & Kramer, U. (2002). A long way ahead: Understanding and engineering plant metal accumulation. Trends in Plant Science, 7(7), 309–315. https://doi.org/10.1016/S1360-1385(02)02295-1
  • Das, P., Samantaray, S., & Rout, G. R. (1997). Studies on cadmium toxicity in plants: A review. Environmental Pollution, 98(1), 29–36. https://doi.org/10.1016/S0269-7491(97)00110-3
  • Dasberg, S., & Mendel, K. (1971). The effect of soil water and aeration on seed germination. Journal of Experimental Botany, 22(4), 992–998. https://doi.org/10.1093/jxb/22.4.992
  • DEFRA (Department for Environment, food and rural affairs) and Environment Agency. (2009). Soil guideline values for heavy metals. Almondsbury.
  • Ekmekci, Y., Tanyolac, D., & Aythan, B. (2009). A crop tolerating oxidative stress induced by excess Pb: Maize. Acta Physiologiae Plantarum, 31(2), 319–330. https://doi.org/10.1007/s11738-008-0238-3
  • Elly, P. H., Best, E. T., Kaaren, N. G., Melissa, L. W., & Bryan, K. L. (2006). Toxicity and metabolites of 2,4,6-trinitrotoluene (TNT) in plants and worm from exposure to aged soil. ERDC/EL TR-, 04–18.
  • Ernst, W. H. O. (1998). Effects of heavy metals in plants at the cellular and organismic level ecotoxicology. In S. Gerrit & M. Bernd (Eds.), III, Bioaccumulation and biological effects of chemicals (pp. 587–620). Akademischer Verlag.
  • Eun, S. O., Youn, H. S., & Lee, Y. (2000). Lead disturbs microtubule organization in the root meristem of Zea mays. Physiologia Plantarum, 110(3), 357–365. https://doi.org/10.1034/j.1399-3054.2000.1100310.x
  • Fahr, M., Laplaze, L., Bendaou, N., Hocher, V., El Mzibri, M., Bogusz, D., & Smouni, A. (2013). Effect of lead on root growth. Frontiers in Plant Science, 4, 175. https://doi.org/10.3389/fpls.2013.00175
  • Feng, X., Tang, S., Shang, L., Yan, H., Sommar, J., & Lindqvist, O. (2003). Total gaseous mercury in the atmosphere of Guiyang, PR China. Science of the Total Environment, 304(1–3), 61–72. https://doi.org/10.1016/S0048-9697(02)00557-0
  • Foy, C. D., Chaney, R. L., & White, M. C. (1978). The physiology of metal toxicity in plants. Annual Review of Plant Physiology, 29(1), 511–566. https://doi.org/10.1146/annurev.pp.29.060178.002455
  • Gholamian, F., & Gholamian, F. (2008). Effects of HMX and TNT contaminations on biochemical constitutes in Triticum Sativum L. and Raphanus Sativus L. plants. Indian Journal of Plant Physiology, 13(3), 211–216.
  • Gong, P., Wilke, B., & Fleischmann, S. (1999). Soil-based phytotoxicity of 2,4,6-Trinitrotoluene (TNT) to terrestrial higher plants. Archives of Environmental Contamination and Toxicology, 36(2), 152–157. https://doi.org/10.1007/s002449900455
  • Görge, E., Brandt, S., & Werner, D. (1994). Uptake and metabolism of 2,4,6-trinitrotoluene in higher plants. Environmental Science and Pollution Research, 1(4), 229–233. https://doi.org/10.1007/BF02986535
  • Hernandez, L. E., Carpena-Ruiz, R., & Garate, A. (1996). Alterations in the mineral nutrition of pea seedlings exposed to cadmium. Journal of Plant Nutrition, 19(12), 1581–1598. https://doi.org/10.1080/01904169609365223
  • Jensen, E., Peoples, M., & Hauggaard-Nielsen, H. (2010). Faba bean in cropping systems. Field Crops Research, 115(3), 203–216. https://doi.org/10.1016/j.fcr.2009.10.008
  • Jinbiao, Z., Hanwen, W., Xiangping, W., & Weinan, H. (2010). Subcellular distribution and chemical forms of cadmium in the cells of strawberry (Fragaria ananassa Duch.). The Journal of Horticultural Science and Biotechnology, 85(6), 563–569. https://doi.org/10.1080/14620316.2010.11512715
  • Khan, A., Khan, S., Khan, A., Qamar, Z., & Waqas, M. (2015). The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: A review. Environmental Science and Pollution Research, 22, 13772–13799. http://doi.org/10.1007/s11356-015-4881-0
  • Khan, N., Siddiqui, M., AlSolami, M., Alamri, S., Hu, Y., Ali, H., Al-Amri, A. A., Alsubaie, Q. D., Al-Munqedhi, B. M. A., & Al-Ghamdi, A. (2020). Crosstalk of hydrogen sulfide and nitric oxide requires calcium to mitigate impaired photosynthesis under cadmium stress by activating defense mechanisms in Vigna radiata. Plant Physiology and Biochemistry, 156, 278–290. https://doi.org/10.1016/j.plaphy.2020.09.017
  • Khatisashvili, G., Gordeziani, M., Adamia, G., Kvesitadze, E., Sadunishvili, T., & Kvesitadze, G. (2009). Higher plants ability to assimilate explosives. World Academy of Science and Engineering Technology, 33, 256–270.
  • Krishnan, G., Horst, G. L., Darnell, S., & Powers, W. L. (2000). Growth and development of smooth bromegrass and tall fescue in TNT-contaminated soil. Environmental Pollution, 107(1), 109–116. https://doi.org/10.1016/S0269-7491(99)00126-8
  • Landmine Monitor. (2019). Executive Summary. International Campaign to Ban Landmines. Human Rights Watch.
  • Larson, S. L., Martin, W. A., Escalon, B. L., & Thompson, M. (2008). Dissolution, sorption, and kinetics involved in systems containing explosives, water, and soil. Environmental Science & Technology, 42(3), 786–792. https://doi.org/10.1021/es0717360
  • Leitch, D. R., Carrie, J., Lean, D., Macdonald, R. W., Stern, G. A., & Wang, F. Y. (2007). The delivery of mercury to the Beaufort Sea of the Arctic Ocean by the Mackenzie River. Science of the Total Environment, 373(1), 178–195. https://doi.org/10.1016/j.scitotenv.2006.10.041
  • Li, Q. S., Chen, Y., Fu, H. B., Cui, Z. H., Shi, L., Wang, L. L., & Liu, Z. F. (2012). Health risk of heavy metals in food crops grown on reclaimed tidal flat soil in the Pearl River Estuary, China. Journal of Hazardous Materials, 227-228, 148–154. https://doi.org/10.1016/j.jhazmat.2012.05.023
  • Li, W., Khan, M. A., Yamaguchi, S., & Kamiya, Y. (2005). Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. Plant Growth Regulation, 46(1), 45–50. https://doi.org/10.1007/s10725-005-6324-2
  • Liu, D., Zou, J., Meng, Q., Zou, J., & Jiang, W. (2009). Uptake and accumulation and oxidative stress in garlic (Allium sativum L.) under lead phytotoxicity. Ecotoxicology, 18(1), 134–143. https://doi.org/10.1007/s10646-008-0266-1
  • Lou, Y., Zhao, P., Wang, D., Amombo, E., Sun, X., Wang, H., Zhuge, Y., & Rouached, H. (2017). Germination, physiological responses and gene expression of tall fescue (Festuca arundinacea Schreb.) growing under Pb and Cd. PLoS One, 12(1), e0169495. https://doi.org/10.1371/journal.pone.0169495
  • Manara, A. (2012). Plant responses to heavy metal toxicity. In: Furini, A., (Ed), Plants and heavy metals (pp. 27–53). Springer Briefs in Biometals.
  • Mukherji, S., & Maitra, P. (1976). Toxic effects of lead growth and metabolism of germinating rice (Oryza sativa L.) seeds mitosis of onion (Allium cepa) root tip cells. Industrial Journal of Experimental Biology, 14, 519–521.
  • Munzuroglu, O., & Geckil, H. (2002). Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Archives of Environmental Contamination and Toxicology, 43(2), 203–213. https://doi.org/10.1007/s00244-002-1116-4
  • Nachón, C. T., 2000. Environmental aspects of the international crisis of antipersonnel landmines and the implementation of the 1997 Mine Ban Treaty: Thematic report. Landmine Monitor Report 2000. International Campaign to Ban Landmines.
  • Odabas, M. S., & Mut, Z. (2007). Modeling the effect of temperature on percentage and duration of seed germination in grain legumes and cereals. American Journal of Plant Physiology, 2(5), 303–310. https://doi.org/10.3923/ajpp.2007.303.310
  • Parrotta, L., Guerriero, G., Sergeant, K., Cai, G., & Hausman, J. F. (2015). Target or barrier? The cell wall of early-and later-diverging plants vs cadmium toxicity: Differences in the response mechanisms. Frontiers in Plant Science, 6, 133. https://doi.org/10.3389/fpls.2015.00133
  • Peralta-Videaa, J. R., Gardea-Torresdey, J. L., Gomezc, E., Tiemanna, K. J., Parsonsa, J. G., & Carrillod, G. (2002). Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environmental Pollution, 119(3), 291–301. https://doi.org/10.1016/S0269-7491(02)00105-7
  • Peterson, M. M., Horst, G. L., Shea, P. J., Comfort, S. D., & Peterson, R. K. D. (1996). TNT and 4-amino-2,6-dinitrotoluene influence on germination and early seedling development of tall fescue. Environmental Pollution, 93(1), 57–62. https://doi.org/10.1016/0269-7491(96)00016-4
  • Piršelová, B. (2011). Monitoring the sensitivity of selected crops to lead, cadmium and arsenic. Journal of Stress Physiology and Biochemistry, 7(4), 31–38.
  • Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environmental Monitoring and Assessment, 191(7), 419. https://doi.org/10.1007/s10661-019-7528-7
  • Rahoui, S., Chaoui, A., & Ferjani, E. E. (2008). Differential sensitivity to cadmium in germinating seeds of three cultivars of faba bean (Vicia faba L.). Acta Physiologiae Plantarum, 30(4), 451–456. https://doi.org/10.1007/s11738-008-0142-x
  • Robidoux, P., Bardai, G., Paquet, L., Ampleman, G., Thiboutot, S., Hawari, J., & Sunahara, G. I. (2003). Phytotoxicity of 2,4,6-Trinitrotoluene (TNT) and Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine (HMX) in Spiked Artificial and Natural Forest Soils. Archives of Environmental Contamination and Toxicology, 44(2), 0198–0209. https://doi.org/10.1007/s00244-002-2018-1
  • Scheidemann, P., Klunk, A., Sens, C., & Werner, D. (1998). Species dependent uptake and tolerance of nitro aromatic compounds by higher plants. Journal of Plant Physiology, 152(2–3), 242–247. https://doi.org/10.1016/S0176-1617(98)80139-9
  • Schott, C. D., & Worthley, E. G. 1974. The toxicity of TNT and related wastes to an aquatic flowering plant: Lemna perpusilla Torr. Edgewood Arsenal Technical Report, No. EB-TR–74016.
  • Sens, C., Scheidemann, P., & Werner, D. (1999). The distribution of 14C-TNT in different biochemical compartments of the monocotyledonous Triticum aestivum. Environmental Pollution, 104(1), 113–119. https://doi.org/10.1016/S0269-7491(98)00142-0
  • Sheppard, S. C., Evenden, W. G., Abboud, S. A., & Stephenson, M. (1993). A plant life-cycle bioassay for contaminated soil, with comparison to other bioassays: Mercury and zinc. Archives of Environmental Contamination and Toxicology, 25(1), 27–35. https://doi.org/10.1007/BF00230707
  • Simini, M., Wentsel, R. S., Checkai, R., Phillips, C., Chester, N. A., Major, M. A. (1995). Evaluation of soil toxicity at Joliet Army Ammunition Plant. Environmental Toxicology and Chemistry, 14(4), 623–630. https://doi.org/10.1002/etc.5620140410
  • Talmage, S. S., Opresko, D. M., Maxwell, C. J., Welsh, C. J. E., Cretella, F. M., Reno, P. H., & Daniel, F. B. (1999). Nitroaromatic munition compounds: Environmental effects and screening values, In: Ware, G.W. (eds) Reviews ofEnvironment Contamination and Toxicology, vol 161. New York, NY: Springer. https://doi.org/10.1007/978-1-4757-6427-7_1
  • Thijs, S., Weyens, N., Sillen, W., Gkorezis, P., Carleer, R., & Vangronsveld, J. (2014). Potential for plant growth promotion by a consortium of stress-tolerant 2,4- dinitrotoluene-degrading bacteria: Isolation and characterization of a military soil. Microbial Biotechnology, 7(4), 294–306. https://doi.org/10.1111/1751-7915.12111
  • Travis, E. R., Bruce, N. C., & Rosser, S. J. (2008). Microbial and plant ecology of a long-term TNT-contaminated site. Environmental Pollution, 153(1), 119–126. https://doi.org/10.1016/j.envpol.2007.07.015
  • Troll, K. (2000). The impact of anti-personnel landmines on the environment. Available from United Nations Institute for Disarmament Research: Geneva, CH. .
  • Vassilev, A., & Yordanov, I. (1997). Reductive analysis of factors limiting growth of Cd-exposed plants: A review. Bulgarian Journal of Plant Physiology, 23, 114–133.
  • Verma, S., & Dubey, R. S. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science, 164(4), 645–655. https://doi.org/10.1016/S0168-9452(03)00022-0
  • Via, S. M., Zinnert, J. C., & Young, D. R. (2015). Differential effects of two explosive compounds on seed germination and seedling morphology of a woody shrub, Morella cerifera. Ecotoxicology, 24(1), 194–201. https://doi.org/10.1007/s10646-014-1372-x
  • Vijayaragavan, M., Prabhahar, C., Sureshkumar, J., Natarajan, A., Vijayarengan, P., & Sharavanan, S. (2011). Toxic Effect of Cadmium on Seed Germination, Growth and Biochemical Contents of Cowpea (Vigna Unguiculata L.) Plants. International Multidisciplinary Research Journal, 1, 5.
  • Vila, M., Lorber-Pascal, S., & Laurent, F. (2008). Phytotoxicity to and uptake of TNT by rice. Environmental Geochemistry and Health, 30(2), 199–203. https://doi.org/10.1007/s10653-008-9145-1
  • Wagner, G. J. (1993). Accumulation of cadmium in crop plants and its consequences to human health. Advances in Agronomy, 51, 173–212.
  • Wang, C., Tian, Y., Wang, X., Geng, J., Jiang, J., Yu, H., & Wang, C. (2010). Lead-contaminated soil induced oxidative stress, defense response and its indicative biomarkers in roots of Vicia faba seedlings. Ecotoxicology, 19(6), 1130–1139. https://doi.org/10.1007/s10646-010-0496-x
  • Wang, Y., & Greger, M. (2004). Clonal differences in mercury tolerance, accumulation, and distribution in willow. Journal of Environmental Quality, 33(5), 1779–1785. https://doi.org/10.2134/jeq2004.1779
  • Wang, Z., Liu, X., & Qin, H. (2019). Bioconcentration and translocation of heavy metals in the soil-plants system in Machangqing copper mine, Yunnan Province, China. Journal of Geochemical Exploration, 200, 159–166. https://doi.org/10.1016/j.gexplo.2019.02.005
  • Weaver, R., Melton, W., Wang, D., & Duble, R.L., J. R. (1984). Uptake of arsenic and mercury from soil by bermudagrass Cynodon dactylon. Environmental Pollution Series A, Ecological and Biological, 33(2), 133–142. https://doi.org/10.1016/0143-1471(84)90173-9
  • Woźny, A., & Jerczyńska, E. (1991). The effect of lead on early stages of Phaseolus vulgaris L. growth in vitro conditions. Biologia Plantarum, 33(1), 32–39. https://doi.org/10.1007/BF02873785
  • Xu, J., Bravo, A. G., Lagerkvist, A., Bertilsson, S., Sjöblom, R., & Kumpiene, J. (2015). Sources and remediation techniques for mercury contaminated soil. Environment International, 74, 42–53. https://doi.org/10.1016/j.envint.2014.09.007
  • Yu, M. (2005). Environmental Toxicology (Second ed.). CRC Press.
  • Zhang, W. H., & Tyerman, S. D. (1999). Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiology, 120(3), 849–857. https://doi.org/10.1104/pp.120.3.849
  • Zhou, Z. S., Huang, S. Q., Guo, K., Mehta, S. K., Zhang, P. C., & Yang, Z. M. (2007). Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. Journal of Inorganic Biochemistry, 101(1), 1–9. https://doi.org/10.1016/j.jinorgbio.2006.05.011