303
Views
0
CrossRef citations to date
0
Altmetric
Research Article

White-berried grapevines as hosts for polyphagous aphids: analysis of probing behavior, plant leaf anatomy and allelochemicals

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 814-831 | Received 05 Apr 2023, Accepted 21 Oct 2023, Published online: 21 Nov 2023

References

  • Alhmedi A, Bylemans D, Bangels E, Belien T. 2022. Cultivar-mediated effects on apple–Dysaphis plantaginea interaction. Journal of Pest Science 95:1303–1315. DOI: 10.1007/s10340-021-01460-6.
  • Aliaño-Gonzalez MJ, Richard T, Cantos-Villar E. 2020. Grapevine cane extracts: Raw plant material, extraction methods, quantification, and applications. Biomolecules 10:1195. DOI: 10.3390/biom10081195.
  • Alvarez AE, Tjallingii WF, Garzo E, Vleeshouwers V, Dicke M, Vosman B. 2006. Location of resistance factors in the leaves of potato and wild tuber-bearing Solanum species to the aphid Myzus persicae. Entomologia Experimentalis Et Applicata 121:145–157. DOI: 10.1111/j.1570-8703.2006.00464.x.
  • Baroi AM, Popitiu M, Fierascu I, Sărdărescu I-D, Fierascu RC. 2022. Grapevine wastes: A rich source of antioxidants and other biologically active compounds. Antioxidants 11:393. DOI: 10.3390/antiox11020393.
  • Bentley WJ, Varela L, Daane KM. 2005. Grapes, insects ecology and control. In: Pimentel D, editor. Encyclopedia of pest management. New York: Taylor & Francis. pp. 1–8.
  • Biais B, Krisa S, Cluzet S, Da Costa G, Waffo-Teguo P, Merillon J-M, Richard T. 2017. Antioxidant and cytoprotective activities of grapevine stilbenes. Journal of Agricultural and Food Chemistry 65(24):4952–4960. DOI: 10.1021/acs.jafc.7b01254.
  • Biesaga M, Pyrzynska K. 2013. Stability of bioactive polyphenols from honey during different extraction methods. Food Chemistry 136(1):46–54. DOI: 10.1016/j.foodchem.2012.07.095.
  • Blackman RL, Eastop VF. 2017. Taxonomic issues. In: van Emden H, Harrington R, editors. Aphids as crop pests. Wallingford, (Oxfordshire, UK); Boston (MA): CAB International. pp. 1–36.
  • Boratyński F, Dancewicz K, Paprocka M, Gabryś B, Wawrzeńczyk C, Falabella P. 2016. Chemo-enzymatic synthesis of optically active γ- and δ-decalactones and their effect on aphid probing, feeding and settling behavior. PLoS ONE 11(1):e0146160. DOI: 10.1371/journal.pone.0146160.
  • Brault V, Uzest M, Monsion B, Jacquot E, Blanc S. 2010. Aphids as transport devices for plant viruses. Comptes rendus biologies 333(6–7):524–538. DOI: 10.1016/j.crvi.2010.04.001.
  • Castillo-Munoz N, Gomez-Alonso S, Garcıa-Romero E, Hermosın-Gutierrez I. 2010. Flavonol profiles of Vitis vinifera white grape cultivars. Journal of Food Composition & Analysis 23:699–705. DOI: 10.1016/j.jfca.2010.03.017.
  • Chan CK, Forbes AR, Raworth DA. 1991. Aphid-transmitted viruses and their vectors of the world. Technical Bulletin 1991-3E. Vancouver: Research Branch Agriculture Canada.
  • Dancewicz K, Sznajder K, Załuski D, Kordan B, Gabryś B. 2016. Behavioral sensitivity of Myzus persicae to volatile isoprenoids in plant tissues. Entomologia Experimentalis et Applicata 160(3):229–240. DOI: 10.1111/eea.12480.
  • Dancewicz K, Szumny A, Wawrzeńczyk C, Gabryś B. 2020. Repellent and antifeedant activities of citral-derived lactones against the peach potato aphid. International Journal of Molecular Sciences 21:8029. DOI: 10.3390/ijms21218029.
  • Dogimont C, Bendahmane A, Chovelon V, Boissot N. 2010. Host plant resistance to aphids in cultivated crops: Genetic and molecular bases, and interactions with aphid populations. Comptes rendus biologies 333(6–7):566–573. DOI: 10.1016/j.crvi.2010.04.003.
  • Douglas AE. 2003. The nutritional physiology of aphids. Advances in Insect Physiology 31:73–140. DOI: 10.1016/S0065-2806(03)31002-1.
  • Douglas AE, Van Emden H. 2017. Nutrition and symbiosis. In: van Emden H, Harrington R, editors. Aphids as crop pests. Wallingford: CABI. pp. 114–131.
  • EPG Systems, Wageningen, The Netherlands. 2022. Available: https://www.epgsystems.eu/. Accessed May 2022 13.
  • Escudero-Martinez C, Leybourne D, Bos J. 2021. Plant resistance in different cell layers affects aphid probing and feeding behavior during non-host and poor-host interactions. Bulletin of Entomological Research 111(1):31–38. DOI: 10.1017/S0007485320000231.
  • Fabris S, Momo F, Ravagnan G, Stevanato R. 2008. Antioxidant properties of resveratrol and piceid on lipid peroxidation in micelles and monolamellar liposomes. Biophysical Chemistry 135(1–3):76–83. DOI: 10.1016/j.bpc.2008.03.005.
  • FAOSTAT. 2022. Food and Agriculture Organisation Statistical Database. Available: https://www.fao.org/faostat/en/#data/QCL. Accessed Jul 2022 3.
  • Fereres A, Moreno A. 2009. Behavioral aspects influencing plant virus transmission by homopteran insects. Virus Research 141:158–168. DOI: 10.1016/j.virusres.2008.10.020.
  • Fereres A, Perry KL. 2019. Movement Between Plants: Horizontal Transmission. In: Palukaitis P, García-Arenal F, editors. Cucumber mosaic virus. St Paul (MN): American Phytopathological Society. pp. 173–184.
  • Fereres A, Raccah B. 2015. Plant virus transmission by insects. In: eLS. John Wiley & Sons, Ltd (Ed.). DOI: 10.1002/9780470015902.a0000760.pub3.
  • Fuchs M. 2020. Grapevine viruses: A multitude of diverse species with simple but overall poorly adopted management solutions in the vineyard. Journal of Plant Pathology 102:643–653. DOI: 10.1007/s42161-020-00579-2.
  • Gabryś B, Pawluk M. 1999. Acceptability of different species of Brassicaceae as hosts for the cabbage aphid. Entomologia Experimentalis et Applicata 91:105–109. DOI: 10.1046/j.1570-7458.1999.00471.x.
  • Gabryś B, Tjallingii WF. 2002. The role of singrin in host plant recognition by aphdis during initial plant penetration. Entomologia Experimentalis et Applicata 104:89–93. DOI: 10.1046/j.1570-7458.2002.00994.x.
  • Goufo P, Singh RK, Cortez IA. 2020. Reference list of phenolic compounds (including stilbenes) in grapevine (Vitis vinifera L.) roots, woods, canes, stems, and leaves. Antioxidants 9:398. DOI: 10.3390/antiox9050398.
  • Hocking AD, Leong SL, Kazi BA, Emmett RW, Scott ES. 2007. Fungi and mycotoxins in vineyards and grape products. International Journal of Food Microbiology 119(1–2):84–88. DOI: 10.1016/j.ijfoodmicro.2007.07.031.
  • Holman J. 2009. The aphids and their host plants. In: Host plant catalog of aphids. Online. DOI: 10.1007/978-1-4020-8286-3.
  • Huang F, Tjallingii WF, Zhang P, Zhang J, Lu Y, Lin J. 2012. EPG waveform characteristics of solenopsis mealybug stylet penetration on cotton. Entomologia Experimentalis et Applicata 143:47–54. DOI: 10.1111/j.1570-7458.2012.01233.x.
  • Kassemeyer HH. 2017. Fungi of grapes. In: König H, Unden G, Fröhlich J, editors. Biology of microorganisms on grapes, in must and in wine. Cham: Springer. pp. 103–132. DOI:10.1007/978-3-319-60021-5_4.
  • Katis NI, Tsitsipis JA, Stevens M, Powell G. 2007. Transmission of plant viruses. In: Van Emden H, Harrington R, editors. Aphids as crop pests. Wallingford (Oxfordshire, UK): CAB International. pp. 353–390.
  • Keller M. 2015. Botany and anatomy: 1-57. In: The science of grapevines. 2nd ed. Academic Press.
  • Kim HJ, Park J, Hwang I. 2014. Investigating water transport through the xylem network in vascular plants. Journal of Experimental Botany 65(7):1895–1904. DOI: 10.1093/jxb/eru075.
  • Klingauf FA. 1987. Host plant finding and acceptance. In: Minks A, Harrewijn P, editors. Aphids, their biology, natural enemies and control. Vol. 2B. Amsterdam: Elsevier Sc. Publ. pp. 209–223.
  • Le Roux V, Dugravot S, Campan E, Vincent FC, Giordanengo P. 2008. Wild Solanum resistance to aphids: Antobiosis or antixenosis? Journal of Economic Entomology 101:584–591. DOI: 10.1603/0022-0493(2008)101[584:WSRTAA]2.0.CO;2.
  • Luo K, Zhao H, Wang X, Kang Z. 2022. Prevalent pest management strategies for grainaphids: opportunities and challenges. Frontiers in Plant Science 12:790919. DOI: 10.3389/fpls.2021.790919.
  • Mahalanobis PC. 1936. On the generalized distance in statistics. Proceedings of the National Academy of Sciences, India 12:49–55.
  • Marchetti E, Civolani S, Leis M, Chicca M, Tjallingii WF, Pasqualini E, Baronio P. 2009. Tissue location of resistance in apple to the rosy apple aphid established by electrical penetration graphs. Bulletin of Insectology 62(2):203–208.
  • Maul E, Töpfer R. 2022a. Vitis International variety catalogue. (www.Vivc.de). Available: https://www.vivc.de/index.php?r=passport%2Fview&id=784. Accessed Jul 2022 3.
  • Maul E, Töpfer R. 2022b. Vitis International variety catalogue. (www.Vivc.de). Available: https://www.vivc.de/index.php?r=passport%2Fview&id=20340. Accessed Jul 2022 3.
  • Maul E, Töpfer R. 2022c. Vitis International variety catalogue. (www.Vivc.de). Available: https://www.vivc.de/index.php?r=passport%2Fview&id=1321. (www.Vivc.de). Accessed Jul 2022 3.
  • Maul E, Töpfer R. 2022d. Vitis International variety catalogue. (www.Vivc.de). Available: https://vinograd.info/sorta/stolovye/myskat-Letnii.html. Accessed Jul 2022 3.
  • Mayoral AM, Tjallingii WF, Castanera E. 1996. Probing behavior of Diuraphis noxia on five cereal species with different hydroxyamic acid levels. Entomologia Experimentalis et Applicata 78:341–348. DOI: 10.1111/j.1570-7458.1996.tb00799.x.
  • Miles P. 1999. Aphid saliva. Biological Reviews 74:41–85. DOI: 10.1017/S0006323198005271.
  • Moreno A, Tjallingii WF, Fernandez-Mata G, Fereres A. 2012. Differences in the mechanism of inoculation between a semi-persistent and non-persistent aphid-transmitted plant virus. The Journal of General Virology 93:662–667. DOI: 10.1099/vir.0.037887-0.
  • Ng JCK, Perry KL. 2004. Transmission of plant viruses by aphid vectors. Molecular Plant Pathology 5(5):505–511. DOI: 10.1111/J.1364-3703.2004.00240.X.
  • OIV. 2019. International organisation of vine and wine statistical report on world vitiviniculture. Available: https://www.oiv.int/en/statistiques/recherche. Accessed Jul 2022 3.
  • Paprocka M, Dancewicz K, Kordan B, Damszel M, Sergiel I, Biesaga M, Mroczek J, Arroyo Garcia RA, Gabryś B. 2023. Probing behavior of Aphis fabae and Myzus persicae on three species of grapevines with analysis of grapevine leaf anatomy and allelochemicals. European Zoological Journal 90(1):83–100. DOI: 10.1080/24750263.2022.2162615.
  • Pardal D, Caro M, Tueros I, Barranco A, Navarro V. 2014. Resveratrol and piceid metabolites and their fat-reduction effects in zebrafish larvae. Zebrafish 11(1):32–40. DOI: 10.1089/zeb.2013.0893.
  • Pawlus AD, Waffo-Téguo P, Shaver J, Mérillon JM. 2012. Stilbenoid Chemistry from Wine and the Genus Vitis, a review. Journal international des sciences de la vigne et du vin 46(2):57–111. DOI: 10.20870/oeno-one.2012.46.2.1512.
  • Pettersson J, Tjallingii WF, Hardie J. 2007. Host-plant selection and feeding. In: Van Emden H, Harrington R, editors. Aphids as crop pests. Wallingford (Oxfordshire, UK): CAB International. pp. 87–113.
  • Pettersson J, Tjallingii WF, Hardie J. 2017. Host-plant selection and feeding. In: Van Emden H, Harrington R, editors. Aphids as crop pests. Wallingford (Oxfordshire, UK): CAB International. pp. 173–195.
  • Philippi J, Schliephake E, Jürgens H-U, Jansen G, Ordon F. 2015. Feeding behavior of aphids on narrow-leafed lupin (Lupinus angustifolius) genotypes varying in the content of quinolizidine alkaloids. Entomologia Experimentalis et Applicata 156:37–51. DOI: 10.1111/eea.12313.
  • Pompon J, Quiring D, Giordanengo P, Pelletier Y. 2010. Role of xylem consumption on osmoregulation in Macrosiphum euphorbiae (Thomas). Journal of Insect Physiology 56(6):610–615. DOI: 10.1016/j.jinsphys.2009.12.009.
  • Ponti L, Gutierrez AP, Boggia A, Neteler M. 2018. Analysis of grape production in the face of climate change. Climate 6:20. DOI: 10.3390/cli6020020.
  • Portu J, López-Alfaro I, Gómez-Alonso S, López R, Garde-Cerdán T. 2015. Changes on grape phenolic composition induced by grapevine foliar applications of phenylalanine and urea. Food Chemistry 180:171–180. DOI: 10.1016/j.foodchem.2015.02.042.
  • Powell G, Hardie J. 2002. Xylem ingestion by winged aphids. Entomologia Experimentalis et Applicata 104:103–108. DOI: 10.1046/j.1570-7458.2002.00996.x.
  • Powell G, Hardie J, Pickett JA. 1997. Laboratory evaluation of antifeedant compounds for inhibiting settling by cereal aphids. Entomologia Experimentalis et Applicata 84:189–193. DOI: 10.1046/j.1570-7458.1997.00214.x.
  • Powell G, Tosh CR, Hardie J. 2006. Host plant selection by aphids: Behavioral, evolutionary, and applied perspectives. Annual Review of Entomology 51:309–330. DOI: 10.1146/annurev.ento.51.110104.151107.
  • Prado E, Tjallingii WF. 1994. Aphid activities during sieveelement punctures. Entomologia Experimentalis et Applicata 72:157–165. DOI: 10.1111/j.1570-7458.1994.tb01813.x.
  • Prado E, Tjallingii WF. 1997. Effects of previous plant infestation on sieve element acceptance by two aphids. Entomologia Experimentalis et Applicata 82:189–200. DOI: 10.1046/j.1570-7458.1997.00130.x.
  • Rencher AC. 1992. Interpretation of canonical discriminant functions, canonical variates, and principal components. American Statistician 46(3):217–225. DOI: 10.1080/00031305.1992.10475889.
  • Reynolds M, Chapman S, Crespo-Herrera L, Molero G, Mondal S, Pequeno DNL, Pinto F, Pinera-Chavez FJ, Poland J, Rivera-Amado C, Saint Pierre C, Sukumaran S. 2020. Breeder friendly phenotyping. Plant Science: An International Journal of Experimental Plant Biology 295:110396. DOI: 10.1016/j.plantsci.2019.110396.
  • Sastry KS, Mandal B, Hammond J, Scott SW, Briddon RW. 2019. Encyclopedia of plant viruses and viroids. 1st ed. New Delhi: Springer.
  • Seidler-Łożykowska K, Bocianowski J. 2012. Evaluation of variability of morphological traits of selected caraway (Carum carvi L.) genotypes. Industrial Crops & Products 35:140–145. DOI: 10.1016/j.indcrop.2011.06.026.
  • Sergiel I, Pohl P, Biesaga M. 2014. Characterisation of honeys according to their content of phenolic compounds using high performance liquid chromatography/tandem mass spectrometry. Food Chemistry 145:404–408. DOI: 10.1016/j.foodchem.2013.08.068.
  • Singh S, Kaur I, Kariyat R. 2021. The multifunctional roles of polyphenols in plant-Herbivore interactions. International Journal of Molecular Sciences 22:1442. DOI: 10.3390/ijms22031442.
  • Smith CM. 2005. Plant resistance to arthropods. Molecular and conventional approaches. The Netherlands: Springer.
  • Smith CM, Chuang WP. 2014. Plant resistance to aphid feeding: Behavioral, physiological, genetic and molecular cues regulate aphid host selection and feeding. Pest Management Science 70:528–540. DOI: 10.1002/ps.3689.
  • Souza MF, Davis JA, Ranger C. 2020. Detailed characterization of Melanaphis sacchari (Hemiptera: Aphididae) feeding behavior on different host plants. Environmental Entomology 49(3):683–691. DOI: 10.1093/ee/nvaa036.
  • Spiller N, Koenders L, Tjallingii W. 1990. Xylem ingestion by aphids – a strategy for maintaining water balance. Entomologia Experimentalis Et Applicata 55:101–104. DOI: 10.1111/j.1570-7458.1990.tb01352.x.
  • Stec K, Kordan B, Gabryś B. 2021. Effect of soy leaf flavonoids on pea aphid probing behavior. Insects 12:756. DOI: 10.3390/insects12080756.
  • Stevens M, Lacomme C. 2017. Trensmission of plant viruses. In: Van Emden H, Harrington R, editors. Aphids as crop pests. Wallingford (Oxfordshire, UK): CAB International. pp. 323–361.
  • Storniolo CE, Quifer-Rada P, Lamuela-Raventos RM, Moreno JJ. 2014. Piceid presents antiproliferative effects in intestinal epithelial Caco-2 cells, effects unrelated to resveratrol release. Food & Function 5:2137–2144. DOI: 10.1039/C4FO00305E.
  • Su D, Cheng Y, Liu M, Liu D, Cui H, Zhang B, Zhou S, Yang T, Mei Q, Mukhopadhyay P. 2013. Comparision of piceid and resveratrol in antioxidation and antiproliferation activities in vitro. PLoS ONE 8(1):e54505. DOI: 10.1371/journal.pone.0054505.
  • Teixeira A, Eiras-Dias J, Castellarin SD, Gerós H. 11 2013. Berry phenolics of grapevine under challenging environments. International Journal of Molecular Sciences 14(9):18711–18739. DOI: 10.3390/ijms140918711.
  • Tjallingii WF. 1994. Sieve element acceptance by aphids. European Journal of Entomology 91:47–52.
  • Tjallingii WF. 2006. Salivary secretions by aphids interacting with proteins of phloem wound responses. Journal of Experimental Botany 57(4):739–745. DOI: 10.1093/jxb/erj088.
  • Tjallingii WF, Esch THH. 1993. Fine structure of ahid stylet routes in plant tissues in correlation with EPG signals. Physiological Entomology 18:317–328. DOI: 10.1111/j.1365-3032.1993.tb00604.x.
  • Treutter D. 2006. Significance of flavonoids in plant resistance: A review. Environmental Chemistry Letters 4:147. DOI: 10.1007/s10311-006-0068-8.
  • Van Bel AJE, Will T. 2016. Functional evaluation of proteins in watery and gel saliva of aphids. Frontiers in Plant Science 7:1840. DOI: 10.3389/fpls.2016.01840.
  • Van Emden HF. 2017. Host-plant resistance. In: Van Emden H, Harrington R, editors. Aphids as crop pests. Wallingford (Oxfordshire, UK): CABI. pp. 515–532.
  • Van Helden M, Tjallingii WF. 1993. Tissue localisation of lettuce resistance to the aphid Nasonovia ribisnigri using electrical penetration graphs. Entomologia Experimentalis et Applicata 68(3):269–278. DOI: 10.1111/j.1570-7458.1993.tb01713.x.
  • Van Hoof HA. 1958. An investigation of the biological transmission of a non-persistent virus. Wageningen: The Agricultural University.
  • Vincent C, Isaacs R, Bostanian NJ, Lasnier J. 2012. Principles of arthropod pest management in vineyards. In: Noubar J, Bostanian C, Isaacs R, editors. Arthropod management in vineyards: Pests, approaches, and future directions. Dordrecht-Heidelberg-New York-London: Springer. pp. 1–16.
  • Vitulo N, Lemos Jr WJF, Calgaro M, Confalone M, Felis GE, Zapparoli G, Nardi T. 2019. Bark and grape microbiome of Vitis vinifera: Influence of geographic patterns and agronomic management on bacterial diversity. Frontiers in Microbiology 9:3203. DOI: 10.3389/fmicb.2018.03203.
  • Wamonje FO, Donnelly R, Tungadi TD, Murphy AM, Pate AE, Woodcock C, Caulfield J, Mutuku JM, Bruce TJA, Gilligan CA, Pickett JA, Carr JP. 2020. Different plant viruses induce changes in feeding behavior of specialist and generalist aphids on common bean that are likely to enhance virus transmission. Frontiers in Plant Science 10:1811. DOI: 10.3389/fpls.2019.01811.
  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC. 1 2012. Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior 7(10):1306–1320. DOI: 10.4161/psb.21663.
  • Will T, Tjallingii WF, Thönnessen A, van Bel AJ. 2007. Molecular sabotage of plant defense by aphid saliva. Proceedings of the National Academy of Sciences USA 104(25):10536–10541. DOI: 10.1073/pnas.0703535104.
  • Wróblewska-Kurdyk A, Dancewicz K, Gliszczyńska A, Gabryś B. 2020. New insight into the behavior modifying activity of two natural sesquiterpenoids farnesol and nerolidol towards Myzus persicae (Sulzer) (Homoptera: Aphididae). Bulletin of Entomological Research 110(2):249–258. DOI: 10.1017/S0007485319000609.
  • Wu D, Zeng L, Zhou A, Xu Y. 2013. Effects of Solenopsis invicta (Hymenoptera: Formicidae) tending on the probing behavior of Phenacoccuss olenopsis (Hemiptera: Pseudococcidae). The Florida Entomologist 96(4):1343–1349. DOI: 10.1653/024.096.0413.
  • Zhang Y, Fan J, Francis F, Chen J. 2017. Watery saliva secreted by the grain aphid Sitobion avenae stimulates aphid resistance in wheat. Journal of Agricultural and Food Chemistry 65(40):8798–8805. DOI: 10.1021/acs.jafc.7b03141.
  • Züst T, Agrawal A. 2016. Mechanisms and evolution of plant resistance to aphids. Nature Plants 2:15206. DOI: 10.1038/nplants.2015.206.