348
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Toxic effects of nickel on tolerance and regeneration in the freshwater shrimp Neocaridina davidi

, , , ORCID Icon, , & ORCID Icon show all
Pages 180-205 | Received 05 Oct 2023, Accepted 19 Jan 2024, Published online: 12 Feb 2024

References

  • Ali MHH, Fishar MRA. 2005. Accumulation of trace metals in some benthic invertebrate and fish species revelant to their concentration in water and sediment of lake Qarun, Egypt. The Egyptian Journal of Aquatic Research 31(1):289–301.
  • Barathkumar S, Padhi RK, Parida PK, Marigoudar SR. 2022. In vivo appraisal of oxidative stress response, cell ultrastructural aberration and accumulation in Juvenile Scylla serrata exposed to uranium. Chemosphere 300:134561. DOI: 10.1016/j.chemosphere.2022.134561.
  • Bednarska AJ, Laskowski R, Pyza E, Semik D, Świątek Z, Woźnicka O. 2016. Metal toxicokinetics and metal-driven damage to the gut of the ground beetle Pterostichus oblongopunctatus. Environmental Science and Pollution Research 23(21):22047–22058. DOI: 10.1007/s11356-016-7412-8.
  • Bednarska AJ, Stachowicz I. 2013. Costs of living in metal polluted areas: Respiration rate of the ground beetle Pterostichus oblongopunctatus from two gradients of metal pollution. Ecotoxicology 22(1):118–124. DOI: 10.1007/s10646-012-1008-y.
  • Bednarska AJ, Stachowicz I, Kuriańska L. 2013. Energy reserves and accumulation of metals in the ground beetle Pterostichus oblongopunctatus from two metal-polluted gradients. Environmental Science and Pollution Research 20(1):390–398. DOI: 10.1007/s11356-012-0993-y.
  • Blewett TA, Leonard EM. 2017. Mechanisms of nickel toxicity to fish and invertebrates in marine and estuarine waters. Environmental Pollution 223:311–322. DOI: 10.1016/j.envpol.2017.01.028.
  • Blewett TA, Wood CM. 2015. Low salinity enhances Ni-mediated oxidative stress and sub-lethal toxicity to the green shore crab (Carcinus maenas). Ecotoxicology and Environmental Safety 122:159–170. DOI: 10.1016/j.ecoenv.2015.07.019.
  • Bonelli M, Bruno D, Caccia S, Sgambetterra G, Cappellozza S, Jucker C, Tettamanti G, Casartelli M. 2019. Structural and functional characterization of Hermetia illucens larval midgut. Frontiers in Physiology 10(204):1–18. DOI: 10.3389/fphys.2019.00204.
  • Cempel M, Nikel GJPJS. 2006. Nickel: A review of its sources and environmental toxicology. Polish Journal of Environmental Studies 15(3):375–382.
  • Chiodi Boudet LN, Polizzi P, Romero MB, Robles A, Marco-Vecchio JE, Gerpe MS. 2015. Histopathological and biochemical evidence of hepatopancreatic toxicity caused by cadmium in white shrimp, Palaemonetes argentinus. Ecotoxicology & Environmental Safety 113:231–240. DOI: 10.1016/j.ecoenv.2014.11.019.
  • Coogan TP, Latta DM, Snow ET, Costa M, Lawrence A. 1989. Toxicity and carcinogenicity of nickel compounds. CRC Critical Reviews in Toxicology 19(4):341. DOI: 10.3109/10408448909029327.
  • D’arcy MS. 2019. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biology International 43(6):582–592. DOI: 10.1002/cbin.11137.
  • Das Dores Teixeira A, Fialho MDCQ, Zanuncio JC, de Souza Ramalho F, Serrão JE. 2013. Degeneration and cell regeneration in the midgut of Podisus nigrispinus (Heteroptera: Pentatomidae) during post-embryonic development. Arthropod Structure & Development 42(3):237–246. DOI: 10.1016/j.asd.2013.02.004.
  • Das KK, Reddy RC, Bagoji IB, Das S, Bagali S, Mullur L, Khodnapur JP, Biradar MS. 2019. Primary concept of nickel toxicity–An overview. Journal of Basic and Clinical Physiology and Pharmacology 30(2):141–152. DOI: 10.1515/jbcpp-2017-0171.
  • Diwan BA, Kasprzak KS, Rice JM. 1992. Transplacental carcinogenic effects of nickel(II) acetate in the renal cortex, renal pelvis and adenohypophysis in F344/NCr rats. Carcinogenesis 13:1351–1357. DOI: 10.1093/carcin/13.8.1351.
  • Donker MH. 1992. Energy reserves and distribution of metals in populations of the isopod Porcellio scaber from metal-contaminated sites. Functional Ecology 6(4):445–454. DOI: 10.2307/2389282.
  • Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi AJCD. 2009. Life and death partners: Apoptosis, autophagy and the cross-talk between them. Cell Death & Differentiation 16(7):966–975. DOI: 10.1038/cdd.2009.33.
  • Ezemonye LI, Adebayo PO, Enuneku AA, Tongo I, Ogbomida E. 2019. Potential health risk consequences of heavy metal concentrations in surface water, shrimp (Macrobrachium macrobrachion) and fish (Brycinus longipinnis) from Benin River, Nigeria. Toxicology Reports 6:1–9. DOI: 10.1016/j.toxrep.2018.11.010.
  • Fernández‐Ruiz R. 2022. TXRF spectrometry in the bioanalytical sciences: A brief review. X‐Ray Spectrometry 51(3):279–293. DOI: 10.1002/xrs.3243.
  • Franzetti E, Huang ZJ, Shi YX, Xie K, Deng XJ, Li JP, Li Q, Yang W-Y, Zeng W-N, Casartelli M, Deng H-M, Cappellozza S, Grimaldi A, Xia Q, Tettamanti G, Cao Y, Feng Q. 2012. Autophagy precedes apoptosis during the remodeling of silkworm larval midgut. Apoptosis 17(3):305–324. DOI: 10.1007/s10495-011-0675-0.
  • Gaillardet J, Viers J, Dupré B. 2003. Trace elements in river waters. In: Holland HD, Turekian KK, editors Treatise on geochemistry. Vol. 5. Oxford: Elsevier. pp. 225–272.
  • Gehrmann S. 2021. Allgemeine Süßwasserkrebspraxis: Flusskrebse, Garnelen, Krabben, Mittelkrebse & Pfeilschwanzkrebse des Süß- und Brackwassers. Germany: BoD – Books on Demand.
  • Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A. 2020. Nickel: Human health and environmental toxicology. International Journal of Environmental Research and Public Health 17(3):679. DOI: 10.3390/ijerph17030679.
  • Giusti F, Dallai L, Beani L, Manfredini F, Dallai R. 2007. The midgut ultrastructure of the endoparasite Xenos vesparum (Rossi) (Insecta, Strepsiptera) during post-embryonic development and stable carbon isotopic analyses of the nutrient uptake. Arthropod Structure & Development 36:183–197. DOI: 10.1016/j.asd.2007.01.001.
  • Graham ER, Thompson JT. 2009. Deposit-and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. Journal of Experimental Marine Biology and Ecology 368(1):22–29. DOI: 10.1016/j.jembe.2008.09.007.
  • Haber LT, Erdreicht L, Diamond GL, Maier AM, Ratney R, Zhao Q, Dourson ML. 2000. Hazard identification and dose response of inhaled nickel-soluble salts. Regulatory Toxicology and Pharmacology 31(2):210–230. DOI: 10.1006/rtph.2000.1377.
  • Hołyńska-Iwan I, Sobiesiak M, Kowalczyk W, Wróblewski M, Cwynar A, Szewczyk-Golec A. 2023. Nickel ions influence the transepithelial sodium transport in the trachea, intestine and skin. Scientific Reports 13:6931. DOI: 10.1038/s41598-023-33690-2.
  • Jabłońska A, Mamos T, Gruszka P, Szlauer-Łukaszewska A, Grabowski M. 2018. First record and DNA barcodes of the aquarium shrimp, Neocaridina davidi, in Central Europe from thermally polluted River Oder canal, Poland. Knowledge and Management of Aquatic Ecosystems 419(14):1–5. DOI: 10.1051/kmae/2018004.
  • Klionsky D. 2016. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222. DOI: 10.1080/15548627.2015.1100356.
  • Klionsky D. 2021. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy 17:1–382. DOI: 10.1080/15548627.2020.1797280.
  • Kniffin CD, Burnett LE, Burnett KG. 2014. Recovery from hypoxia and hypercapnic hypoxia: Impacts on the transcription of key antioxidants in the shrimp Litopenaeus vannamei. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 170:43–49. DOI: 10.1016/j.cbpb.2014.01.006.
  • Lawal-Are AO, Moruf RO, Oluseye-Are SO, Isola TO. 2019. Antioxidant defense system alternations in four crab species as a bio-indicator of environmental contamination. Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca. Horticulture 76(1):73–80. DOI: 10.15835/buasvmcn-vm:2019.0001.
  • Leonard EM, Barcarolli I, Silva KR, Wasielesky W, Wood CM, Bianchini A. 2011. The effects of salinity on acute and chronic nickel toxicity and bioaccumulation in two euryhaline crustaceans: Litopenaeus vannamei and Excirolana armata. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 154(4):409–419. DOI: 10.1016/j.cbpc.2011.07.011.
  • Lipovšek S, Leitinger G, Novak T, Janžekovič F, Gorgoń S, Kamińska K, Rost-Roszkowska MM. 2018. Changes in the midgut cells in the European cave spider, Meta menardi, during starvation in spring and autumn. Histochemistry and Cell Biology 149(3):245–260. DOI: 10.1007/s00418-017-1623-z.
  • Lipovšek S, Novak T. 2016. Autophagy in the fat body cells of the cave cricket Troglophilus neglectus Krauss, 1878 (Rhaphidophoridae, Saltatoria) during overwintering. Protoplasma 253(2):457–466. DOI: 10.1007/s00709-015-0824-3.
  • Litwin JA. 1985. Light microscopic histochemistry on plastic sections. Progress in Histochemistry and Cytochemistry 16(2):1–84. PMID: 2417278. DOI: 10.1016/s0079-6336(85)80001-2.
  • Lobo V, Patil A, Phatak A, Chandra N. 2010. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews 4(8):118–126. DOI: 10.4103/0973-7847.70902.
  • Macomber L, Hausinger RP. 2011. Mechanisms of nickel toxicity in microorganisms. Metallomics 3(11):1153–62. DOI: 10.1039/c1mt00063b.
  • Masson I, Díaz AC, Petriella AM. 2012. Effect of salinity changes on the midgut gland of Artemesia longinaris (Decapoda, Penaeidae). Latin American Journal of Aquatic Research 40(2):358–366. DOI: 10.3856/vol40-issue2-fulltext-10.
  • Menze MA, Fortner G, Nag S, Hand SC. 2010. Mechanisms of apoptosis in Crustacea: What conditions induce versus suppress cell death? Apoptosis 15(3):293–312. DOI: 10.1007/s10495-009-0443-6.
  • Naboka A, Marenkov O, Kovalchuk J, Shapovalenko Z, Nesterenko O, Dzhobolda B. 2018. Parameters of the histological adaptation of Marmorkrebs Procambarus virginalis (Lyko, 2017) (Decapoda, Cambaridae) to manganese, nickel and lead ions pollution. International Letters of Natural Sciences 70:24–33. DOI: 10.56431/p-tzw2qo.
  • Ostróżka A, Tiffert Z, Wilczek G, Rost-Roszkowska M. 2022. Can insecticide-free clean water regenerate the midgut epithelium of the freshwater shrimp after dimethoate treatment? Micron 155(103162):1–16. DOI: 10.1016/j.micron.2021.103162.
  • Pantaleão JAF, Barros-Alves SDP, Tropea C, Alves DF, Negreiros-Fransozo ML, López-Greco LS. 2015. Nutritional vulnerability in early stages of the freshwater ornamental “Red Cherry shrimp” Neocaridina davidi (Caridea: Atyidae). Journal of Crustacean Biology 35(5):676–681. DOI: 10.1163/1937240X-00002357.
  • Pook C, Lewis C, Galloway T. 2009. The metabolic and fitness costs associated with metal resistance in Nereis diversicolor. Marine Pollution Bulletin 58(7):1063–1071. DOI: 10.1016/j.marpolbul.2009.02.003.
  • Poprawa I, Chajec Ł, Chachulska-Żymełka A, Wilczek G, Student S, Leśniewska M, Rost-Roszkowska M. 2022. Ovaries and testes of Lithobius forficatus (Myriapoda, Chilopoda) react differently to the presence of cadmium in the environment. Scientific Reports 12(1):6705. DOI: 10.1038/s41598-022-10664-4.
  • Rost-Roszkowska MM, Poprawa I, Chajec Ł, Chachulska-Żymełka A, Wilczek G, Wilczek P, Student S, Skowronek M, Nadgórska-Socha A, Leśniewska M. 2020a. Influence of soil contaminated with cadmium on cell death in the digestive epithelium of soil centipede Lithobius forficatus (Myriapoda, Chilopoda). European Zoological Journal 87(1):242–262. DOI: 10.1080/24750263.2020.1757168.
  • Rost-Roszkowska MM, Janelt K, Poprawa I. 2020b. Ultrastructure of the midgut epithelium in three species of Macrobiotidae (Tardigrada: Eutardigrada: Parachela). Zoological Journal of the Linnean Society 188(3):788–796. DOI: 10.1093/zoolinnean/zlz052.
  • Rost-Roszkowska MM, Vilimová J, Tajovský K, Šustr V, Ostróżka A, Kaszuba F. 2021a. Structure of the midgut epithelium in four diplopod species: Histology, histochemistry and ultrastructure. Arthropod Systematics & Phylogeny 79:295–308. DOI: 10.3897/asp.79.e67022.
  • Rost-Roszkowska MM, Poprawa I, Chajec Ł, Chachulska-Żymełka A, Wilczek G, Wilczek P, Leśniewska M. 2021b. Effects of cadmium on mitochondrial structure and function in different organs: studies on the soil centipede Lithobius forficatus (Myriapoda, Chilopoda). European Zoological Journal 88(1):632–648. DOI: 10.1080/24750263.2021.1912199.
  • Rost-Roszkowska MM, Poprawa I, Chajec Ł, Chachulska-Żymełka A, Wilczek G, Skowronek M, Leśniewska M. 2022. Hazards related to the presence of cadmium in food–studies on the European soil centipede, lithobius forficatus. Science of the Total Environment 845:157298. DOI: 10.1016/j.scitotenv.2022.157298.
  • Sah D, Verma PK, Kumari KM, Lakhani A. 2017. Chemical partitioning of fine particle-bound As, Cd, Cr, Ni Co, Pb and assessment of associated cancer risk due to inhalation, ingestion and dermal exposure. Inhalation Toxicology 29:483–493. DOI: 10.1080/08958378.2017.1406563.
  • Schuwerack PMM, Lewis JW. 2003. The mode of action of acute and chronic concentrations of waterborne Cd in the digestive gland of the acclimated infested freshwater crab (Potamonautes warreni). Cell and Tissue Research 312:249–263. DOI: 10.1007/s00441-002-0630-z.
  • Schwerk C, Schulze-Osthoff K. 2003. Non-apoptotic functions of caspases in cellular proliferation and differentiation. Biochemical Pharmacology 66(8):1453–1458. DOI: 10.1016/S0006-2952(03)00497-0.
  • Sibly RM, Calow P. 1989. A life-cycle theory of responses to stress. Biological Journal of the Linnean Society 37(1–2):101–116. DOI: 10.1111/j.1095-8312.1989.tb02007.x.
  • Sies H. 2015. Oxidative stress: A concept in redox biology and medicine. Redox Biology 4:180–183. DOI: 10.1016/j.redox.2015.01.002.
  • Smolders R, De Boeck G, Blust R. 2003. Changes in cellular energy budget as a measure of whole effluent toxicity in zebrafish (Danio rerio). Environmental Toxicology and Chemistry: An International Journal 22(4):890–899. DOI: 10.1002/etc.5620220429.
  • Sonakowska L, Włodarczyk A, Poprawa I, Binkowski M, Śróbka J, Kamińska K, Kszuk-Jendrysik M, Chajec Ł, Zajusz B. 2015. Structure and ultrastructure of the endodermal region of the alimentary tract in the freshwater shrimp Neocaridina heteropoda (Crustacea, Malacostraca). PLoS One 10(5):e0126900. DOI: 10.1371/journal.pone.0126900.
  • Sonakowska L, Włodarczyk A, Wilczek G, Wilczek P, Student S, Rost-Roszkowska MM. 2016. Cell Death in the Epithelia of the Intestine and Hepatopancreas in Neocaridina heteropoda (Crustacea, Malacostraca). PLoS One 11(2):e0147582. DOI: 10.1371/journal.pone.0147582.
  • Sonakowska-Czajka L, Śróbka J, Ostróżka A, Rost-Roszkowska MM. 2021. Postembryonic development and differentiation of the midgut in the freshwater shrimp Neocaridina davidi (Crustacea, Malacostraca, Decapoda) larvae. Journal of Morphology 282:48–65. DOI: 10.1002/jmor.21281.
  • Sukharev SA, Pleshakova OV, Sadovnikov VB. 1997. Role of proteases in activation of apoptosis. Cell Death & Differentiation 4(6):457–462. DOI: 10.1038/sj.cdd.4400263.
  • Szefer P. 2002. Trace metals in the environment 5. Metals, metalloids and Radionuclides in the Baltic sea ecosystem. London: Elsevier. pp. 699–703.
  • Tomczak E, Dominiak A. 2016. Organizmy żywe w systemie biomonitoringu jakości wody. Proceedings of ECOpole 10(1):315–323.
  • Traczewska TM. 2011. Biologiczne metody oceny skażenia środowiska. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej.
  • Tropea C, Stumpf L, López Greco LS. 2015. Effect of temperature on biochemical composition, growth and reproduction of the ornamental Red Cherry shrimp Neocaridina heteropoda heteropoda (Decapoda, Caridea). PLoS One 10(3):e0119468. DOI: 10.1371/journal.pone.0119468.
  • Verslycke T, Roast SD, Widdows J, Jones MB, Janssen CR. 2004. Cellular energy allocation and scope for growth in the estuarine mysid Neomysis integer (Crustacea: Mysidacea) following chlorpyrifos exposure: A method comparison. Journal of Experimental Marine Biology and Ecology 306(1):1–16. DOI: 10.1016/j.jembe.2003.12.022.
  • Vogt G. 2020. Cytopathology and immune response in the hepatopancreas of decapod crustaceans. Diseases of Aquatic Organisms 138:41–88. DOI: 10.3354/dao03443.
  • Von Burg R. 1997. Toxicology update. Journal of Applied Toxicology 17:425–431. DOI: 10.1002/(SICI)1099-1263(199711/12)17:6<425:AID-JAT460>3.0.CO;2-R.
  • Wang L, Feng J, Wang G, Guan T, Zhu C, Li J, Wang H. 2021. Effects of cadmium on antioxidant and non-specific immunity of Macrobrachium nipponense. Ecotoxicology and Environmental Safety 224:112651. DOI: 10.1016/j.ecoenv.2021.112651.
  • Weber S, Traunspurger W. 2016. Influence of the ornamental red cherry shrimp Neocaridina davidi (Bouvier, 1904) on freshwater meiofaunal assemblages. Limnologica 59:155–161. DOI: 10.1016/j.limno.2016.06.001.
  • Wei K, Wei Y, Song C. 2020. The response of phenoloxidase to cadmium-disturbed hepatopancreatic immune-related molecules in freshwater crayfish Procambarus clarkii. Fish & Shellfish Immunology 99:190–198. DOI: 10.1016/j.fsi.2020.02.012.
  • Wilczek G, Rost-Roszkowska M, Homa J, Szulińska E, Student S, Chajec Ł, Wiśniewska K, Surmiak-Stalmach K. 2023. How cadmium and copper change the sensitivity of the hemocytes of Steatoda grossa spider on immunostimulation: Qualitative and quantitative analysis. European Zoological Journal 90(2):624–642. DOI: 10.1080/24750263.2023.2237989.
  • Włodarczyk A, Sonakowska L, Kamińska K, Marchewka A, Wilczek G, Wilczek P, Student S, Rost-Roszkowska M. 2017. The effect of starvation and re-feeding on mitochondrial potential in the midgut of Neocaridina davidi (Crustacea, Malacostraca). PLoS One 12(3):e0173563. DOI: 10.1371/journal.pone.0173563.
  • Włodarczyk A, Student S, Rost-Roszkowska M. 2019a. Autophagy and apoptosis in starved and re-fed Neocaridina davidi (Crustacea, Malacostraca) midgut. Canadian Journal of Zoology 97(4):294–303. DOI: 10.1139/cjz-2018-0104.
  • Włodarczyk A, Wilczek G, Wilczek P, Student S, Ostróżka A, Tarnawska M, Rost-Roszkowska M. 2019b. Relationship between ROS production, MnSOD activation and periods of fasting and re-feeding in freshwater shrimp Neocaridina davidi (Crustacea, Malacostraca). PeerJ 7:e7399. DOI: 10.7717/peerj.7399.
  • Wu H, Li Y, Lang X, Wang L. 2015. Bioaccumulation, morphological changes, and induction of metallothionein gene expression in the digestive system of the freshwater crab Sinopotamon henanense after exposure to cadmium. Environmental Science and Pollution Research 22(15):11585–11594. DOI: 10.1007/s11356-015-4419-5.
  • Yılmaz AB, Yılmaz L. 2007. Influences of sex and seasons on levels of heavy metals in tissues of green tiger shrimp (Penaeus semisulcatus de Hann, 1844). Food Chemistry 101(4):1664–1669. DOI: 10.1016/j.foodchem.2006.04.025.
  • Zarnescu O, Petrescu AM, Gaspar A, Craciunescu O. 2017. Effect of sublethal nickel chloride exposure on crayfish, Astacus leptodactylus ovary: An ultrastructural, autometallographic, and electrophoretic analyses. Microscopy and Microanalysis 23(3):668–678. DOI: 10.1017/S1431927617000496.
  • Zechner R, Madeo F, Kratky D. 2017. Cytosolic lipolysis and lipophagy: Two sides of the same coin. Nature Reviews Molecular Cell Biology 18(11):671–684. DOI: 10.1038/nrm.2017.76.
  • Zhang Y, Chen X, Gueydan C, Han J. 2018. Plasma membrane changes during programmed cell deaths. Cell Research 28(1):9–21. DOI: 10.1038/cr.2017.133.
  • Zhu QH, Zhou ZK, Tu DD, Zhou YL, Wang C, Liu Z-P, Gu W-B, Chen Y-Y, Shu M-A. 2018. Effect of cadmium exposure on hepatopancreas and gills of the estuary mud crab (Scylla paramamosain): Histopathological changes and expression characterization of stress response genes. Aquatic Toxicology (Amsterdam, Netherlands) 195:1–7. DOI: 10.1016/j.aquatox.2017.11.020.
  • Zuo L, Zhou T, Pannell BK, Ziegler AC, Best TM. 2015. Biological and physiological role of reactive oxygen species – The good, the bad and the ugly. Acta Physiologica 214:329–348. DOI: 10.1111/apha.12515.