212
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of copper nanoparticles on oxidative stress genes and their enzyme activities in common carp (Cyprinus carpio)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 354-365 | Received 31 Oct 2023, Accepted 14 Mar 2024, Published online: 10 Apr 2024

References

  • Abdel-Latif HMR, Dawood MAO, Mahmoud SF, Shukry M, Noreldin AE, Ghetas HA, Khallaf MA. 2021. Copper oxide nanoparticles alter serum biochemical indices, induce histopathological alterations, and modulate transcription of cytokines, hsp70, and oxidative stress genes in Oreochromis niloticus. Animals 11(3):652. DOI: 10.3390/ani11030652.
  • Abravaya K, Myers MP, Murphy SP, Morimoto RI. 1992. The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes & Development 6(7):1153–1164. DOI: 10.1101/gad.6.7.1153.
  • Afshari A, Sourinejad I, Gharaei A, Johari SA, Ghasemi Z. 2021. The effects of diet supplementation with inorganic and nanoparticulate iron and copper on growth performance, blood biochemical parameters, antioxidant response and immune function of snow trout Schizothorax zarudnyi (Nikolskii, 1897). Aquaculture 539:736638. DOI: 10.1016/j.aquaculture.2021.736638.
  • Aghamirkarimi S, Mashinchian Moradi A, Sharifpour I, Jamili S, Ghavam Mostafavi P. 2017. Sublethal effects of copper nanoparticles on the histology of gill, liver and kidney of the Caspian roach, Rutilus rutilus caspicus. Global Journal of Environmental Science and Management 3(3):323–332. DOI: 10.22034/gjesm.2017.03.03.009.
  • Aksakal FI, Ciltas A. 2019. Impact of copper oxide nanoparticles (CuO NPs) exposure on embryo development and expression of genes related to the innate immune system of zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 223:78–87. DOI: 10.1016/j.cbpc.2019.05.016.
  • Al-Bairuty GA, Shaw BJ, Handy RD, Henry TB. 2013. Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology (Amsterdam, Netherlands) 126:104–115. DOI: 10.1016/j.aquatox.2012.10.005.
  • Asif S, Javed M, Abbas S, Ambreen F. 2021. Growth responses of carnivorous fish species under the chronic stress of water-borne copper. Iranian Journal of Fisheries Sciences 20(3):773–788. DOI: 10.22092/ijfs.2021.350176.0.
  • Awasthi YC, Beutler E, Srivastava SK. 1975. Purification and properties of human erythrocyte glutathione peroxidase. Journal of Biological Chemistry 250(13):5144–5149. DOI: 10.1016/S0021-9258(19)41289-1.
  • Barot N, Patel SB, Kaur H. 2016. Nitro resin supported copper nanoparticles: An effective heterogeneous catalyst for CN cross coupling and oxidative CC homocoupling. Journal of Molecular Catalysis A: Chemical 423:77–84. DOI: 10.1016/j.molcata.2016.06.009.
  • Beauchamp C, Fridovich I. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44(1):276–287. DOI: 10.1016/0003-2697(71)90370-8.
  • Bongers ABJ, Sukkel M, Gort G, Komen J, Richter CJJ. 1998. Development and use of genetically uniform strains of common carp in experimental animal research. Laboratory Animals 32(4):349–363. DOI: 10.1258/002367798780599749.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1):248–254. DOI: 10.1016/0003-2697(76)90527-3.
  • Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L. 2006. Acute toxicological effects of copper nanoparticles in vivo. Toxicology Letters 163(2):109–120. DOI: 10.1016/j.toxlet.2005.10.003.
  • Conway JR, Adeleye AS, Gardea-Torresdey J, Keller AA. 2015. Aggregation, dissolution, and transformation of copper nanoparticles in natural waters. Environmental Science & Technology 49(5):2749–2756. DOI: 10.1021/es504918q.
  • Dawood MAO, Eweedah NM, Moustafa EM, El-Sharawy ME, Soliman AA, Amer AA, Atia MH. 2020. Copper nanoparticles mitigate the growth, immunity, and oxidation resistance in common carp (Cyprinus carpio). Biological Trace Element Research 198(1):283–292. DOI: 10.1007/s12011-020-02068-0.
  • Delavari NM, Gharaei A, Mirdar HJ, Davari A, Rastiannasab A. 2022. Modulatory effect of dietary copper nanoparticles and vitamin C supplementations on growth performance, hematological and immune parameters, oxidative status, histology, and disease resistance against Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss). Fish Physiology and Biochemistry 48(1):33–51. DOI: 10.1007/s10695-021-01036-2.
  • Dugal S, Mascarenhas S. 2015. Chemical synthesis of copper nanoparticles and its antibacterial effect against gram negative pathogens. Journal of Advanced Scientific Research 6(3):1–4.
  • FAO. 2020. The state of world fisheries and aquaculture 2020. Sustainability in action. Food and Agriculture Organization 2020:1–244. DOI: 10.4060/ca9229en.
  • Fazelan Z, Hoseini SM, Yousefi M, Khalili M, Hoseinifar SH, Van Doan H. 2020. Effects of dietary eucalyptol administration on antioxidant and inflammatory genes in common carp (Cyprinus carpio) exposed to ambient copper. Aquaculture 520:734988. DOI: 10.1016/j.aquaculture.2020.734988.
  • Forouhar Vajargah M, Mohamadi Yalsuyi A, Hedayati A, Faggio C. 2018. Histopathological lesions and toxicity in common carp (Cyprinus carpio L. 1758) induced by copper nanoparticles. Microscopy Research and Technique 81(7):724–729. DOI: 10.1002/jemt.23028.
  • Ghuglot R, Titus W, Agnihotri AS, Krishnakumar V, Krishnamoorthy G, Marimuthu N. 2021. Stable copper nanoparticles as potential antibacterial agent against aquaculture pathogens and human fibroblast cell viability. Biocatalysis and Agricultural Biotechnology 32:101932. DOI: 10.1016/j.bcab.2021.101932.
  • Giannopolitis CN, Ries SK. 1977. Superoxide dismutases: I. Occurrence in higher plants 1 2. Plant Physiology 59(2):309–314. DOI: 10.1104/pp.59.2.309.
  • Goksøyr A. 1995. Use of cytochrome P450 1A (CYP1A) in fish as a biomarker of aquatic pollution. In: Degen GH, Seiler JP, Bentley P, editors. Toxicology in Transition. Archives of Toxicology. Berlin Heidelberg: Springer. pp. 80–95. DOI: 10.1007/978-3-642-79451-3_7.
  • Gupta N, Siddique R. 2020. Utilization of copper slag in self-compacting concrete – Strength and permeation properties. In: Mechtcherine V, Khayat K, Secrieru, E, editors. Rheology and processing of construction materials. RheoCon SCC 2019. Cham, Switzerland: Springer. pp. 544–551. DOI: 10.1007/978-3-030-22566-7_63.
  • Hanna SK, Miller RJ, Lenihan HS. 2014. Accumulation and toxicity of copper oxide engineered nanoparticles in a Marine mussel. Nanomaterials: Overview and Historical Perspectives 4(3):535–547. DOI: 10.3390/nano4030535.
  • Hoseini SM, Hedayati A, Taheri Mirghaed A, Ghelichpour M. 2016. Toxic effects of copper sulfate and copper nanoparticles on minerals, enzymes, thyroid hormones and protein fractions of plasma and histopathology in common carp Cyprinus carpio. Experimental and Toxicologic Pathology 68(9):493–503. DOI: 10.1016/j.etp.2016.08.002.
  • Ighalo JO, Sagboye PA, Umenweke G, Ajala OJ, Omoarukhe FO, Adeyanju CA, Ogunniyi S, Adeniyi AG. 2021. CuO nanoparticles (CuO NPs) for water treatment: A review of recent advances. Environmental Nanotechnology, Monitoring & Management 15:100443. DOI: 10.1016/j.enmm.2021.100443.
  • Ighodaro OM, Akinloye OA. 2018. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine 54(4):287–293. DOI: 10.1016/j.ajme.2017.09.001.
  • Johari SA, Kalbassi MR, Soltani M, Yu IJ. 2013. Toxicity comparison of colloidal silver nanoparticles in various life stages of rainbow trout (Oncorhynchus mykiss). IFRO 12(1):76–95. http://jifro.ir/article-1-873-en.html.
  • Johari SA, Sarkheil M, Asghari S, Haghighat F, Dekani L, Keyvanshokooh S. 2020. Comparative toxicity of nanoparticulate and ionic copper following dietary exposure to common carp (Cyprinus carpio). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 229:108680. DOI: 10.1016/j.cbpc.2019.108680.
  • Kakakhel MA, Wu F, Sajjad W, Zhang Q, Khan I, Ullah K, Wang W. 2021. Long-term exposure to high-concentration silver nanoparticles induced toxicity, fatality, bioaccumulation, and histological alteration in fish (Cyprinus carpio). Environmental Sciences Europe 33(1):14. DOI: 10.1186/s12302-021-00453-7.
  • Kalatehjari P, Yousefian M, Khalilzadeh MA. 2015. Assessment of antifungal effects of copper nanoparticles on the growth of the fungus Saprolegnia sp. on white fish (Rutilus frisii kutum) eggs. The Egyptian Journal of Aquatic Research 41(4):303–306. DOI: 10.1016/j.ejar.2015.07.004.
  • Kaur J, Khatri M, Puri S. 2019. Toxicological evaluation of metal oxide nanoparticles and mixed exposures at low doses using zebra fish and THP1 cell line. Environmental Toxicology 34(4):375–387. DOI: 10.1002/tox.22692.
  • Kowalska-Góralska M, Dziewulska K, Kulasza M. 2019. Effect of copper nanoparticles and ions on spermatozoa motility of sea trout (Salmo trutta m. Trutta L.). Aquatic Toxicology (Amsterdam, Netherlands) 211:11–17. DOI: 10.1016/j.aquatox.2019.03.013.
  • Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685. DOI: 10.1038/227680a0.
  • Lammel T, Thit A, Cui X, Mouneyrac C, Baun A, Valsami-Jones E, Sturve J, Selck H. 2020. Trophic transfer of CuO NPs from sediment to worms (Tubifex tubifex) to fish (Gasterosteus aculeatus): A comparative study of dissolved Cu and NPs enriched with a stable isotope tracer (65Cu). Environmental Science: Nano 7(8):2360–2372. DOI: 10.1039/D0EN00227E.
  • Lennox AJJ, Bartels P, Pohl M-M, Junge H, Beller M. 2016. In situ photodeposition of copper nanoparticles on TiO2: Novel catalysts with facile light-induced redox cycling. Journal of Catalysis 340:177–183. DOI: 10.1016/j.jcat.2016.04.011.
  • Liu Y, Yan Z, Xia J, Wang K, Ling X, Yan B. 2017. Potential toxicity in crucian carp following exposure to metallic nanoparticles of copper, chromium, and their mixtures: A comparative study. Polish Journal of Environmental Studies 26(5):2085–2094. DOI: 10.15244/pjoes/69251.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. DOI: 10.1006/meth.2001.1262.
  • Ma H, Diamond SA. 2013. Phototoxicity of TiO2 nanoparticles to zebrafish (Danio rerio) is dependent on life stage. Environmental Toxicology and Chemistry 32(9):2139–2143. DOI: 10.1002/etc.2298.
  • Ma W, Soroush A, Van Anh Luong T, Brennan G, Rahaman MS, Asadishad B, Tufenkji N. 2016. Spray- and spin-assisted layer-by-layer assembly of copper nanoparticles on thin-film composite reverse osmosis membrane for biofouling mitigation. Water Research 99:188–199. DOI: 10.1016/j.watres.2016.04.042.
  • Manke A, Wang L, Rojanasakul Y. 2013. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Research International 2013:942916. DOI: 10.1155/2013/942916.
  • Mansouri B, Maleki A, Johari SA, Shahmoradi B, Mohammadi E, Shahsavari S, Davari B. 2016. Copper bioaccumulation and depuration in common carp (Cyprinus carpio) following Co-exposure to TiO2 and CuO nanoparticles. Archives of Environmental Contamination and Toxicology 71(4):541–552. DOI: 10.1007/s00244-016-0313-5.
  • Margis R, Dunand C, Teixeira FK, Margis‐Pinheiro M. 2008. Glutathione peroxidase family–an evolutionary overview. The FEBS Journal 275(15):3959–3970. DOI: 10.1111/j.1742-4658.2008.06542.x.
  • Martínez G, Merinero M, Pérez-Aranda M, Pérez-Soriano EM, Ortiz T, Villamor E, Begines B, Alcudia A. 2021. Environmental impact of nanoparticles’ application as an emerging technology: A review. Materials 14(1):166. DOI: 10.3390/ma14010166.
  • Mazandarani M, Hoseini SM. 2017. Anaemia and plasma lipid profile in common carp (Cyprinus carpio) exposed to ambient copper sulphate and nano-scale copper oxide. Aquaculture Research 48(3):844–852. DOI: 10.1111/are.12928.
  • Mirsafaei R, Heravi MM, Ahmadi S, Moslemin MH, Hosseinnejad T. 2015. In situ prepared copper nanoparticles on modified KIT-5 as an efficient recyclable catalyst and its applications in click reactions in water. Journal of Molecular Catalysis A: Chemical 402:100–108. DOI: 10.1016/j.molcata.2015.03.006.
  • Misra HP, Fridovich I. 1972. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry 247(10):3170–3175. DOI: 10.1016/S0021-9258(19)45228-9.
  • Mitrea S, Oprina G, Radu E, Marinescu V, Voina A, Lingvay I. 2016. Corrosion of copper and carbon steel in some electrical purposes oils. Revista de Chimie (Bucharest) 67(9):1707–1712.
  • Montes M, Pierce CG, Lopez-Ribot JL, Bhalla AS, Guo RY. 2016. Properties of silver and copper nanoparticle containing aqueous suspensions and evaluation of their in vitro activity against Candida albicans and staphylococcus aureus biofilms. Journal of Nano Research 37:109–121. DOI: 10.4028/www.scientific.net/JNanoR.37.109.
  • Naeemi AS, Elmi F, Vaezi G, Ghorbankhah M. 2020. Copper oxide nanoparticles induce oxidative stress mediated apoptosis in carp (Cyprinus carpio) larva. Gene Reports 19:100676. DOI: 10.1016/j.genrep.2020.100676.
  • Noureen A, Jabeen F, Tabish TA, Ali M, Iqbal R, Yaqub S, Shakoor Chaudhry A. 2021. Histopathological changes and antioxidant responses in common carp (Cyprinus carpio) exposed to copper nanoparticles. Drug and Chemical Toxicology 44(4):372–379. DOI: 10.1080/01480545.2019.1606233.
  • Pang J, Xie R, Chua S, Zou Y, Tang M, Zhang F, Chai F. 2021. Preparation of fluorescent bimetallic silver/copper nanoparticles and their utility of dual-mode fluorimetric and colorimetric probe for Hg2+. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 261:120035. DOI: 10.1016/j.saa.2021.120035.
  • Rahman MM. 2015. Role of common carp (Cyprinus carpio) in aquaculture production systems. Frontiers in Life Science 8(4):399–410. DOI: 10.1080/21553769.2015.1045629.
  • Rao MV, Paliyath G, Ormrod DP. 1996. Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology 110(1):125–136. DOI: 10.1104/pp.110.1.125.
  • Saddick S, Afifi M, Abu Zinada OA. 2017. Effect of zinc nanoparticles on oxidative stress-related genes and antioxidant enzymes activity in the brain of Oreochromis niloticus and Tilapia zillii. Saudi Journal of Biological Sciences 24(7):1672–1678. DOI: 10.1016/j.sjbs.2015.10.021.
  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: An open-source platform for biological-image analysis. Nature Methods 9(7):676–682. DOI: 10.1038/nmeth.2019.
  • Schlesinger MJ. 1990. Heat shock proteins. Journal of Biological Chemistry 265(21):12111–12114. DOI: 10.1016/S0021-9258(19)38314-0.
  • Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S, Lead JR, Stone V, Fernandes TF, Jepson M, van Aerle R, Tyler CR. 2010. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicological Sciences 115(2):521–534. DOI: 10.1093/toxsci/kfq076.
  • Shahzad K, Khan MN, Jabeen F, Kosour N, Chaudhry AS, Sohail M. 2018. Retracted Article: Evaluating toxicity of copper(II) oxide nanoparticles (CuO-NPs) through waterborne exposure to tilapia (Oreochromis mossambicus) by tissue accumulation, oxidative stress, histopathology, and genotoxicity. Environmental Science and Pollution Research 25(16):15943–15953. DOI: 10.1007/s11356-018-1813-9.
  • Sheikh FA, Kanjwal MA, Saran S, Chung W-J, Kim H. 2011. Polyurethane nanofibers containing copper nanoparticles as future materials. Applied Surface Science 257(7):3020–3026. DOI: 10.1016/j.apsusc.2010.10.110.
  • Sielska A, Skuza L, Kowalska-Góralska M. 2022. The effects of silver and copper nanoparticles and selenium on Salmo trutta hatchlings. Ecohydrology 15(7):e2453. DOI: 10.1002/eco.2453.
  • Široká Z, Drastichova J. 2004. Biochemical marker of aquatic environment contamination-cytochrome P450 in fish. A review. Acta Veterinaria Brno 73(1):123–132. DOI: 10.2754/avb200473010123.
  • Song L, Vijver MG, Peijnenburg WJGM, Galloway TS, Tyler CR. 2015. A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish. Chemosphere 139:181–189. DOI: 10.1016/j.chemosphere.2015.06.021.
  • Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science 151(1):59–66. DOI: 10.1016/S0168-9452(99)00197-1.
  • Villarreal FD, Das GK, Abid A, Kennedy IM, Kültz D, Johnson SJ. 2014. Sublethal Effects of CuO Nanoparticles on Mozambique Tilapia (Oreochromis mossambicus) Are Modulated by Environmental Salinity. Public Library of Science One 9(2):e88723. DOI: 10.1371/journal.pone.0088723.
  • Woodbury W, Spencer AK, Stahmann MA. 1971. An improved procedure using ferricyanide for detecting catalase isozymes. Analytical Biochemistry 44(1):301–305. DOI: 10.1016/0003-2697(71)90375-7.
  • Woźniak-Budych MJ, Langer K, Peplińska B, Przysiecka Ł, Jarek M, Jarzębski M, Jurga S. 2016. Copper-gold nanoparticles: Fabrication, characteristic and application as drug carriers. Materials Chemistry and Physics 179:242–253. DOI: 10.1016/j.matchemphys.2016.05.036.
  • Yalsuyi AM, Vajargah MF. 2017. Acute toxicity of silver nanoparticles in Roach (Rutilus rutilus) and Goldfish (Carassius auratus). Journal of Environmental Treatment Techniques 5(1):1–4.
  • Zhang L, Yang Z, Yang M, Yang F, Wang G, Liu D, Li X, Yang L, Wang Z. 2022. Copper-induced oxidative stress, transcriptome changes, intestinal microbiota, and histopathology of common carp (cyprinus carpio). Ecotoxicology and Environmental Safety 246:114136. DOI: 10.1016/j.ecoenv.2022.114136.
  • Zhang W, Jia Y, Ji X, Zhang R, Liang T, Du Q, Chang Z. 2016. Optimal reference genes in different tissues, gender, and gonad of Yellow River Carp (Cyprinus carpio var) at various developmental periods. Pakistan Journal of Zoology 48(6).
  • Zhou Y, Wu S, Liu F. 2019. High-performance polyimide nanocomposites with polydopamine-coated copper nanoparticles and nanowires for electronic applications. Materials Letters 237:19–21. DOI: 10.1016/j.matlet.2018.11.067.