1,549
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Antineuronal antibodies and 8-OHdG an indicator of cerebellar dysfunction in autism spectrum disorder: a case–control study

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 840-846 | Received 21 Apr 2019, Accepted 21 Sep 2019, Published online: 03 Oct 2019

References

  • Association AP. Diagnostic and statistical manual of mental disorders [DSM-5®]. American Psychiatric Publishing; 2013.
  • Pop-Jordanova N, Plasevska-Karanfilska D. Autism - genetics, electrophysiology and clinical syndromes. Contrib Acad Sci Arts Sect Biol Med Sci. 2014;35(1):133–146.
  • Skefos J, Cummings C, Enzer K, et al. Regional alterations in Purkinje cell density in patients with autism. PLoS One. 2014;9(2):e81255. doi: 10.1371/journal.pone.0081255
  • Fatemi SH, Aldinger KA, Ashwood P, et al. Consensus paper: Pathological role of the cerebellum in autism. Cerebellum. 2012;11(3):777–807. doi: 10.1007/s12311-012-0355-9
  • Klein AP, Ulmer JL, Quinet SA, et al. Nonmotor functions of the cerebellum: An introduction. Am. J. Neuroradiol. 2016;37(6):1005–1009. doi: 10.3174/ajnr.A4720
  • Schmahmann JD, Rosene DL, Pandya DN. Motor projections to the basis pontis in rhesus monkey. J Comp Neurol. 2004;478(3):248–268. doi: 10.1002/cne.20286
  • Fournier KA, Hass CJ, Naik SK, et al. Motor coordination in autism spectrum disorders: A synthesis and meta-analysis. J Autism Dev Disord. 2010;40(10):1227–1240. doi: 10.1007/s10803-010-0981-3
  • Nowinski CV, Minshew NJ, Luna B, et al. Oculomotor studies of cerebellar function in autism. Psychiatry Res. 2005;137(1-2):11–19. doi: 10.1016/j.psychres.2005.07.005
  • Hanaie R, Mohri I, Kagitani-Shimono K, et al. Aberrant cerebellar-cerebral functional connectivity in children and adolescents with autism spectrum disorder. Front. Hum. Neurosci. 2018;12:454. doi: 10.3389/fnhum.2018.00454
  • Darnell RB, Posner JB. Paraneoplastic syndromes involving the nervous system. N Engl J Med. 2003;349(16):1543–1554. doi: 10.1056/NEJMra023009
  • Lancaster E, Dalmau J. Neuronal autoantigens-pathogenesis, associated disorders and antibody testing. Nat Rev Neurol. 2012;8(7):380–390. doi: 10.1038/nrneurol.2012.99
  • Ogita S, Llaguna OH, Feldman SM, et al. Paraneoplastic cerebellar degeneration with anti-Yo antibody in a patient with HER2/neu overexpressing breast cancer: A case report with a current literature review. Breast J. 2008;14(4):382–384. doi: 10.1111/j.1524-4741.2008.00604.x
  • Hirunagi T, Sato K, Fujino M, et al. Subacute cerebellar ataxia with amphiphysin antibody developing in a patient with follicular thyroid adenoma: a case report. Rinsho Shinkeigaku. 2016;56(11):769–772. doi: 10.5692/clinicalneurol.cn-000939
  • Ali NH, Khalaf SK, Al-Asadi JN, et al. Maternal antineuronal antibodies and risk of childhood autism spectrum disorders: A case–control study. J Chinese Med Assoc. 2016;79(12):661–664. doi: 10.1016/j.jcma.2016.08.003
  • Lovell MA, Markesbery WR. Ratio of 8-hydroxyguanine in intact DNA to free 8-hydroxyguanine is increased in Alzheimer disease ventricular cerebrospinal fluid. Arch Neurol. Mart. 2001;58(3):392–396.
  • Kikuchi A, Takeda A, Onodera H, et al. Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol Dis. 2002;9(2):244–248. doi: 10.1006/nbdi.2002.0466
  • Nishioka N, Arnold SE. Evidence for oxidative DNA damage in the hippocampus of elderly patients with chronic schizophrenia. Am J Geriatr Psychiatry. 2004;12(2):167–175. doi: 10.1097/00019442-200403000-00008
  • Fukuda M, Yamauchi H, Yamamoto H, et al. The evaluation of oxidative DNA damage in children with brain damage using 8-hydroxydeoxyguanosine levels. Brain Dev. 2008;30(2):131–136. doi: 10.1016/j.braindev.2007.07.005
  • Sajdel-Sulkowska EM, Xu M, Koibuchi N. Increase in cerebellar neurotrophin-3 and oxidative stress markers in autism. Cerebellum. 2009;8(3):366–372. doi: 10.1007/s12311-009-0105-9
  • Melnyk S, Fuchs GJ, Schulz E, et al. Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism. J Autism Dev Disord. 2012;42(3):367–377. doi: 10.1007/s10803-011-1260-7
  • Ming X, Stein TP, Brimacombe M, et al. Increased excretion of a lipid peroxidation biomarker in autism. Prostag Leukot Essent Fat Acids. 2005;73(5):379–384. doi: 10.1016/j.plefa.2005.06.002
  • Schopler E, Reichler RJ, Rochen Renner B. The Childhood Autism Rating Scale (CARS), Western Psychological Services; 2007; 11.
  • Robert J, Reichler RJ, Rochen Renner B, et al. Practice DVD on using the CARS, Western Psychological Services. 1988.
  • Garfin DG, Mc Callon D, Cox R. Validity and relaibility of the childhood autism rating scale with autistic adolescents. J Autism Dev Disord. 1988;18: 367–378. doi: 10.1007/BF02212193
  • Sucuoğlu B, Oktem F, Akkök F, et al. A study of the scales for the assessment of the children with autism. 3P Derg. 1996;4(2):116–121.
  • Karim A, Hughes R, El-Lahawi M, et al. Paraneoplastic neurological antibodies. Shoenfeld Y, Gershwin ME MP, editör. Elsevier 2007; 627–652.
  • Schmahmann J. The cerebellum and Cognition. SanDiego: Academic Press; 1997; 41(1): 665–666.
  • Greenfield J. The spino-cerebellar degenerations. Illinois: Springfield; 1954.
  • DeBassio WA, Kemper TL, Knoefel JE. Coffin-Siris syndrome: Neuropathologic findings. Arch Neurol. 1985;42(4):350–353. doi: 10.1001/archneur.1985.04060040060012
  • Kemper TL. The developmental neuropathology of autism. In: Blatt GJ, editor. The neurochemical basis of autism. Boston, MA: Springer; 2010. p. 69–82. doi: 10.1007/978-1-4419-1272-5_5
  • Kemper TL, Bauman M. Neuropathology of infantile autism. J Neuropathol Exp Neurol. 1998;57(7):645–652. doi: 10.1097/00005072-199807000-00001
  • Courchesne E. Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Curr Opin Neurobiol. 1997;7(2):269–278. doi: 10.1016/S0959-4388(97)80016-5
  • Vargas DL, Nascimbene C, Krishnan C, et al. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;57(1):67–81. doi: 10.1002/ana.20315
  • Nadeem A, Ahmad SF, Al-Harbi NO, et al. Increased oxidative stress in the cerebellum and peripheral immune cells leads to exaggerated autism-like repetitive behavior due to deficiency of antioxidant response in BTBR T + tf/J mice. Prog Neuro-Psychopharm Biol Psychiat. 2019;89:245–253. doi: 10.1016/j.pnpbp.2018.09.012
  • Shpyleva S, Ivanovsky S, De Conti A, et al. Cerebellar oxidative DNA damage and altered DNA methylation in the BTBR T + tf/J mouse model of autism and similarities with human post mortem cerebellum. PLoS One. 2014;9(11):e113712. doi: 10.1371/journal.pone.0113712
  • Yukus B, Çakır D. Bıomarker of invıivo oxidative DNA damage; 8-hydroxy-2’-deoxyguanosıne. T Klin J Med. 2001;22(5):535–543.
  • Napoli E, Wong S, Giulivi C. Evidence of reactive oxygen species-mediated damage to mitochondrial DNA in children with typical autism. Mol Autism. 2013;4(1):2–3. doi: 10.1186/2040-2392-4-2
  • Yui K, Tanuma N, Yamada H, et al. Decreased total antioxidant capacity has a larger effect size than increased oxidant levels in urine in individuals with autism spectrum disorder. Environ Sci Pollut Res. 2017;24(10):9635–9644. doi: 10.1007/s11356-017-8595-3
  • Yui K, Tanuma N, Yamada H, et al. Reduced endogenous urinary total antioxidant power and its relation of plasma antioxidant activity of superoxide dismutase in individuals with autism spectrum disorder. Int J Dev Neurosci. 2017;60:70–77. doi: 10.1016/j.ijdevneu.2016.08.003
  • Hosmer DW, Lemeshow S, Sturdivant RX. Applied logistic regression. Hoboken, NJ: John Wiley&Sons; 2013.
  • Metwally FM, Rashad H, Zeidan HM, et al. Study of the effect of bisphenol A on oxidative stress in children with autism spectrum disorders. Indian J Clin Biochem. 2018;33(2):196–201. doi: 10.1007/s12291-017-0667-0
  • Wang L, Jia J, Zhang J, et al. Serum levels of SOD and risk of autism spectrum disorder: A case-control study. Int J Dev Neurosci. 2016;51:12–16. doi: 10.1016/j.ijdevneu.2016.04.004