776
Views
0
CrossRef citations to date
0
Altmetric
Articles

Bayesian penalized model for classification and selection of functional predictors using longitudinal MRI data from ADNI

ORCID Icon, &
Pages 327-343 | Received 25 May 2020, Accepted 30 Mar 2022, Published online: 09 May 2022

References

  • Adaszewski, S., Dukart, J., Kherif, F., Frackowiak, R., & Draganski, B. (2013). How early can we predict Alzheimer's disease using computational anatomy? Neurobiology of Aging, 34(12), 2815–2826. https://doi.org/10.1016/j.neurobiolaging.2013.06.015
  • Arlt, S., Buchert, R., Spies, L., Eichenlaub, M., Lehmbeck, J. T., & Jahn, H. (2013). Association between fully automated MRI-based volumetry of different brain regions and neuropsychological test performance in patients with amnestic mild cognitive impairment and Alzheimer's disease. European Archives of Psychiatry and Clinical Neuroscience, 263(4), 335–344. https://doi.org/10.1007/s00406-012-0350-7
  • Casanova, R., Wagner, B., Whitlow, C. T., Williamson, J. D., S. A. Shumaker, Maldjian, J. A., & Espeland, M. A. (2011). High dimensional classification of structural MRI Alzheimer's disease data based on large scale regularization. Frontiers in Neuroinformatics, 5, 22. https://doi.org/10.3389/fninf.2011.00022
  • Casella, G., Ghosh, M., Gill, J., & Kyung, M. (2010). Penalized regression, standard errors, and Bayesian lassos. Bayesian Analysis, 5(2), 369–411.
  • Fan, Y., Batmanghelich, N., Clark, C. M., & Davatzikos, C., and Alzheimer's Disease Neuroimaging Initiative and others (2008). Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. NeuroImage, 39(4), 1731–1743. https://doi.org/10.1016/j.neuroimage.2007.10.031
  • Fan, Y., James, G. M., & Radchenko, P. (2015). Functional additive regression. The Annals of Statistics, 43(5), 2296–2325. https://doi.org/10.1214/15-AOS1346
  • George, E. I., & McCulloch, R. E. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88(423), 881–889. https://doi.org/10.1080/01621459.1993.10476353
  • George, E. I., & McCulloch, R. E. (1997). Approaches for Bayesian variable selection. Statistica Sinica, 7, 339–373. https://www.jstor.org/stable/24306083
  • Hobert, J. P., & Geyer, C. J. (1998). Geometric ergodicity of Gibbs and block Gibbs samplers for a hierarchical random effects model. Journal of Multivariate Analysis, 67(2), 414–430. https://doi.org/10.1006/jmva.1998.1778
  • Ishwaran, H., & Rao, J. S., et al. (2005). Spike and slab variable selection: Frequentist and bayesian strategies. The Annals of Statistics, 33(2), 730–773. https://doi.org/10.1214/009053604000001147
  • Jack, C. R., Petersen, R. C., Xu, Y., O'Brien, P. C., Smith, G. E., Ivnik, R. J., E. G. Tangalos, & Kokmen, E. (1998). Rate of medial temporal lobe atrophy in typical aging and Alzheimer's disease. Neurology, 51(4), 993–999. https://doi.org/10.1212/WNL.51.4.993
  • Jack, C. R., Petersen, R. C., Xu, Y. C., O'Brien, P. C., Smith, G. E., Ivnik, R. J., Boeve, B. F., Waring, S. C., Tangalos, E. G., & Kokmen, E. (1999). Prediction of ad with MRI-based hippocampal volume in mild cognitive impairment. Neurology, 52(7), 1397–1397. https://doi.org/10.1212/WNL.52.7.1397
  • James, G. M. (2002). Generalized linear models with functional predictors. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(3), 411–432. https://doi.org/10.1111/rssb.2002.64.issue-3
  • Jiang, W. (2006). On the consistency of bayesian variable selection for high dimensional binary regression and classification. Neural Computation, 18(11), 2762–2776. https://doi.org/10.1162/neco.2006.18.11.2762
  • Jiang, W. (2007). Bayesian variable selection for high dimensional generalized linear models: Convergence rates of the fitted densities. The Annals of Statistics, 35(4), 1487–1511. https://doi.org/10.1214/009053607000000019
  • Johnstone, I. M., & Silverman, B. W. (2004). Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences. The Annals of Statistics, 32(4), 1594–1649. https://doi.org/10.1214/009053604000000030
  • Lee, S. H., Bachman, A. H., Yu, D., Lim, J., & Ardekani, B. A., and Alzheimer's Disease Neuroimaging Initiative and others (2016). Predicting progression from mild cognitive impairment to Alzheimer's disease using longitudinal callosal atrophy. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, 2(1), 68–74. https://doi.org/10.1016/j.dadm.2016.01.003
  • Leng, C., Tran, M.-N., & Nott, D. (2014). Bayesian adaptive lasso. Annals of the Institute of Statistical Mathematics, 66(2), 221–244. https://doi.org/10.1007/s10463-013-0429-6
  • Li, Q., Lin, N. (2010). The bayesian elastic net. Bayesian Analysis, 5(1), 151–170. https://doi.org/10.1214/10-BA506
  • Majumder, A. (2017). Variable selection in high-dimensional setup: A detailed illustration through marketing and MRI data. Michigan State University.
  • Meier, L., S. Van De Geer, & Bühlmann, P. (2008). The group lasso for logistic regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1), 53–71. https://doi.org/10.1111/j.1467-9868.2007.00627.x
  • Misra, C., Fan, Y., & Davatzikos, C. (2009). Baseline and longitudinal patterns of brain atrophy in mci patients, and their use in prediction of short-term conversion to ad: Results from adni. NeuroImage, 44(4), 1415–1422. https://doi.org/10.1016/j.neuroimage.2008.10.031
  • Müller, H.-G. (2005). Functional modelling and classification of longitudinal data. Scandinavian Journal of Statistics, 32(2), 223–240. https://doi.org/10.1111/sjos.2005.32.issue-2
  • Park, T., & Casella, G. (2008). The bayesian lasso. Journal of the American Statistical Association, 103(482), 681–686. https://doi.org/10.1198/016214508000000337
  • Polson, N. G., Scott, J. G., & Windle, J. (2013). Bayesian inference for logistic models using pólya–gamma latent variables. Journal of the American Statistical Association, 108(504), 1339–1349. https://doi.org/10.1080/01621459.2013.829001
  • Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., Dahle, C., Gerstorf, D., & Acker, J. D. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15(11), 1676–1689. https://doi.org/10.1093/cercor/bhi044
  • Seixas, F. L., Zadrozny, B., Laks, J., Conci, A., & Saade, D. C. M. (2014). A bayesian network decision model for supporting the diagnosis of dementia, Alzheimer's disease and mild cognitive impairment. Computers in Biology and Medicine, 51(8), 140–158. https://doi.org/10.1016/j.compbiomed.2014.04.010
  • Shen, L., Qi, Y., Kim, S., Nho, K., Wan, J., Risacher, S. L., & Saykin, A. J., and others. (2010). Sparse bayesian learning for identifying imaging biomarkers in ad prediction. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 611–618). Springer.
  • Shi, G. (2017). Bayesian variable selection: Extensions of nonlocal priors. Michigan State University. Statistics.
  • Smith, M., & Kohn, R. (1996). Nonparametric regression using Bayesian variable selection. Journal of Econometrics, 75(2), 317–343. https://doi.org/10.1016/0304-4076(95)01763-1
  • Wang, X., Nan, B., Zhu, J., & Koeppe, R. (2014). Regularized 3d functional regression for brain image data via haar wavelets. The Annals of Applied Statistics, 8(2), 1045. https://doi.org/10.1214/14-AOAS736
  • Windle, J., Polson, N. G., & Scott, J. G. (2014). Sampling polya-gamma random variates: Alternate and approximate techniques. arXiv preprint arXiv:1405.0506.
  • Xu, X., Ghosh, M. (2015). Bayesian variable selection and estimation for group lasso. Bayesian Analysis, 10(4), 909–936. https://doi.org/10.1214/14-BA929
  • Yang, W., Chen, X., Xie, H., & Huang, X. (2010). Ica-based automatic classification of magnetic resonance images from adni data. In Life System Modeling and Intelligent Computing (pp. 340–347). Springer.
  • Zhang, D., & Shen, D., and Alzheimer's Disease Neuroimaging Initiative. (2012). Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PloS One, 7(3), e33182. https://doi.org/10.1371/journal.pone.0033182
  • Zhu, H., Vannucci, M., & Cox, D. D. (2010). A Bayesian hierarchical model for classification with selection of functional predictors. Biometrics, 66(2), 463–473. https://doi.org/10.1111/j.1541-0420.2009.01283.x