Publication Cover
Mineral Processing and Extractive Metallurgy
Transactions of the Institutions of Mining and Metallurgy
Volume 132, 2023 - Issue 3-4
105
Views
0
CrossRef citations to date
0
Altmetric
Articles

A mathematical model of a twin-shaft parallel flow regenerative lime kiln

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 141-155 | Received 07 Dec 2022, Accepted 18 May 2023, Published online: 05 Jun 2023

References

  • Abhale PB, Nag S, Bapat Y, Kulkarni A, Viswanathan NN, Padmapal. 2022a. Development of 2D steady-state mathematical model for blast furnace using OpenFOAM®. Metall Mater Trans B. 53:3469–3491.
  • Abhale PB, Viswanathan NN, Henrik S. 2022b. Numerical modelling of blast furnace evolution and recent trends. Min Proc Extractive Metall. 129(2):166–183.
  • Aguiar B, Vakkilainen E, Cardoso M, Costa Jr. F. 2017. The modelling and dynamic simulation of lime kiln. International Chemical Recovery Conference. Halifax, Nova Scotia.
  • Ar İ, Doğu G. 2001. Calcination kinetics of high purity limestones. Chem Eng J. 83:131–137.
  • Balakrishnan A, Pei D. 1979. Heat transfer in gas-solid packed bed systems. 3. Overall heat transfer rates in adiabatic beds. Ind Eng Chem Process Design Dev. 18:47–50.
  • Balakrishnan R, Pei D. 1978. Convective heat transfer in gas–solid suspension flow through packed beds. AIChE J. 24:613–619.
  • Barin I, Knacke O. 1973. Thermochemical properties of inorganic substances. Berlin: Springer-Verlag.
  • Bes A. 2006. Dynamic process simulation of limestone calcination in normal shaft kilns [PhD thesis]. Otto von Guericke University Magdeburg.
  • Bird R, Stewart W, Lightfoot E. 1960. Transport phenomena. New York: John Wiley and Sons.
  • Borgwardt R. 1985. Calcination kinetics and surface area of dispersed limestone particles. AIChE J. 31:103–111.
  • Coats A, Redfern J. 1964. Kinetic parameters from thermogravimetric data. Nature. 201:68–69.
  • Collarini O. 2009. Innovative design of high-capacity twin shaft regenerative lime kilns. Cem Int J. 7:38–42.
  • Crump L. 2000. Lime production: industry profile. U.S. Environmental Protection Agency. Project No. 7647-001-020.
  • Fedunik-Hofman L, Bayon A, Donne S. 2019a. Comparative kinetic analysis of CaCO3/CaO reaction system for energy storage and carbon capture. Appl Sci. 9:4601.
  • Fedunik-Hofman L, Bayon A, Donne S. 2019b. Kinetics of solid-gas reactions and their application to carbonate looping systems. Energies. 12:2981.
  • Feng K, Lombardo S. 2002. Kinetic analysis from dilatometry and mass spectrometry measurements of the decomposition and sintering of calcium carbonate. J Ceram Process Res. 3:101–108.
  • Gaskell D. 2003. Introduction to the thermodynamics of materials. 4th ed. New York: Taylor & Francis.
  • Hai-Do D. 2012. Simulation of lime calcination in normal shaft and parallel flow regenerative kilns [PhD thesis]. Otto von Guericke University Magdeburg.
  • Hills D. 1968. The mechanism of the thermal decomposition of calcium carbonate. Chem Eng Sci. 23:297–320.
  • Karhela T. 1996. Dynamic simulation model of rotary lime kiln [MSc thesis]. Tampere: Tampere University of Technology.
  • Lundberg T, Orre J, Paananen T, Mattila O. 2020. Modelling of the lime kiln at SSAB, Raahe. Proc SIMS. 61:153–159.
  • Maitra S, Chakrabarty N, Pramanik J. 2008. Decomposition kinetics of alkaline earth carbonates by integral approximation method. Ceramica. 54:268–272.
  • Manocha S, Ponchon F. 2018. Management of lime in steel. Metals (Basel). 8:686.
  • Mills A. 1999. Basic heat and mass transfer. 2nd ed. Hoboken (NJ): Prentice Hall.
  • Obst H, Stradtman J. 1972. The influence of lime and synthetic lime products on steel production. Afr Inst Min Metall. 72:158–164.
  • Piringer H. 2017. Lime shaft kilns. Energy Procedia. 120:75–95.
  • Ranz W, Marshal W. 1952. Evaporation from drops: part 2. Chem Eng Prog. 48:173–180.
  • Schrama F, Beunder E, Van Den Berg B, Yang Y, Boom R. 2017. Sulphur removal in ironmaking and oxygen steelmaking. Ironmak Steelmak. 44:333–343.
  • Senegačnik A, Oman J, Širok B. 2007a. Analysis of calcination parameters and the temperature profile in an annular shaft kiln. Part 1: theoretical survey. Appl Therm Eng. 27:1467–1472.
  • Senegačnik A, Oman J, Širok B. 2007b. Analysis of calcination parameters and the temperature profile in an annular shaft kiln. Part 2: results of tests. Appl Therm Eng. 27:1473–1482.
  • Shagapov S, Burkin M. 2008. Theoretical modeling of simultaneous processes of coke burning and limestone decomposition in a furnace. Combust Explos Shock Waves. 44:55–63.
  • Umadevi T, Bandopadhyay U, Mahapatra P, Prabhu M, Ranjan M. 2010. Influence of limestone particle size on iron ore sinter properties and productivity. Steel Research int. 81:419–425.
  • Wakao N. 1976. Particle-to-fluid transfer coefficients and fluid diffusivities at low flow rate in packed beds. Chem Eng Sci. 31:1115–1122.
  • Wakao N, Kaguei S, Funazkri T. 1979. Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds: correlation of Nusselt numbers. Chem Eng Sci. 34:325–336.
  • Wonchala EP, Wynnyckyj JR. 1987. The phenomenon of thermal channelling in counter-current gas-solid heat exchangers. Can J Chem Eng. 65:736–743.
  • Yi Z, Zhou J, Chen H. 2005. Numerical simulation of thermal process and energy saving of lime furnace. J Cent South Univ f Technol. 12:295–299.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.